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Abstract

Solving large combinatorial optimization problems is a ubiquitous task across multiple
disciplines. Developing efficient procedures for solving these problems has been of
great interest to both researchers and practitioners. Over the last half century, vast
amounts of research have been devoted to studying various methods in tackling these
problems. These methods can be divided into two categories, heuristic methods and
exact algorithms. Heuristic methods can often lead to near optimal solutions in a
relatively time efficient manner, but provide no guarantees on optimality. Exact
algorithms guarantee optimality, but are often very time consuming.

This dissertation focuses on designing efficient exact algorithms that can solve
larger problem instances with faster computational time. A general framework for
an exact algorithm, called the Branch, Bound, and Remember algorithm, is proposed
in this dissertation. Three variations of single machine scheduling problems are pre-
sented and used to evaluate the efficiency of the Branch, Bound, and Remember
algorithm. The computational results show that the Branch, Bound, and Remember
algorithms outperforms the best known algorithms in the literature.

While the Branch, Bound, and Remember algorithm can be used for solving com-
binatorial optimization problems, it does not address the subject of post-optimality
selection after the combinatorial optimization problem is solved. Post-optimality se-
lection is a common problem in multi-objective combinatorial optimization problems
where there exists a set of optimal solutions called Pareto optimal (non-dominated)

solutions. Post-optimality selection is the process of selecting the best solutions within
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the Pareto optimal solution set. In many real-world applications, a Pareto solution set
(either optimal or near-optimal) can be extremely large, and can be very challenging
for a decision maker to evaluate and select the best solution.

To address the post-optimality selection problem, this dissertation also proposes
a new discrete optimization problem to help the decision-maker to obtain an optimal
preferred subset of Pareto optimal solutions. This discrete optimization problem is
proven to be N P-hard. To solve this problem, exact algorithms and heuristic methods
are presented. Different multi-objective problems with various numbers of objectives
and constraints are used to compare the performances of the proposed algorithms and

heuristics.
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Chapter 1

Introduction

In the past decade, there has been an explosion of work at the border of computer
science research and operations research. Traditionally, researchers in both fields have
remained separate, but recent research has started a compilation of work among the
researchers in both fields. Journals and conferences have been established to explore
this boundary between computer science and operations research. Special interest
articles and books have been published since; helping researchers in both communities
to gain new perspectives and to leverage each others work [3, 12, 41, 42, 43, 83]

Despite the relative independence in the fields of computer science and operations
research, these two disciplines share a large number of common problems. Two of
the most common overlaps between the two fields are in the area of combinatorial
optimization and decision analysis. These areas have emerged as a great challenge
both academically and practically. Research and development in the two areas can
lead to both practical and theoretical significance.

Some of the classic combinatorial optimization problems that have been of great
interest to computer scientists and operations researchers are the traveling salesman
problem [23], the quadratic assignment problem [60], various job shop scheduling
problems [64], and many other N P-hard combinatorial optimization problems [38].
The area of decision analysis also has a significant overlap between computer science
and operations research. Both fields are in pursuit with strategies in decision support
as well as autonomous decision making. This is most noticeable in the computer

science sub-field of artificial intelligence.



Although researchers in both fields have limited interaction, they do share some
key conceptual backgrounds. For example researchers in both fields study and use
techniques from computational complexity theory, algorithms, probability theory,
graph theory, and game theory. What sets the researchers in the two fields apart is
the different perspective on approaching the problems. In the area of combinatorial
optimization, computer scientists are recently focusing on approximation algorithms
[101] and randomized algorithms [81], while operations researchers study traditional
mathematical programming [22], heuristics and meta-heuristics [11].

This dissertation focuses on two main topics at the intersection of computer science
and operations research. The first topic of interest is designing efficient exact algo-
rithms for solving large combinatorial optimization problems. A modified branch and
bound (B&B) algorithm, called Branch, Bound and Remember (BB&R) algorithm is
presented through three different single machine scheduling problems. One objective
of the work in this dissertation is to seek out optimal methods that can solve combi-
natorial optimization problems with larger instances and with faster computational
speed.

The second topic of interest is in the area of decision making, namely post opti-
mality selection. That is given a set of optimal solutions, how can decision-makers
select the best solution(s) from the optimal set? In a multi-objective combinatorial
optimization environment, it is common for an algorithm to return not just a single
optimal (nearly optimal) solution, but a set of Pareto optimal (nearly optimal) so-
lutions. In many real-world applications, such Pareto solution sets can be extremely
large. A new discrete optimization problem formulation is presented in this disserta-
tion to help the decision-maker obtain an optimal preferred subset of Pareto optimal
solutions.

This dissertation is organized as follows. Chapter 2 presents the background

on B&B algorithms, and an introduction to the BB&R. algorithm that is used for



solving several single machine scheduling problem presented in Chapters 3, 4, and 5.
Backgrounds on meta-heuristic methods are also presented. Chapter 3 presents the
BB&R algorithm with the Distributed Best First Search (DBFS) exploration strategy
for solving the 1|r;| 3 U; scheduling problem [56]. Several new dominance rules for the
1|r;| >_ U; scheduling problem are reported. Theoretical results are presented showing
that the dominance rules presented in Chapter 3 can be combined to form an exact
algorithm. Computational results are also reported that establish the effectiveness of
the BB&R algorithm with thé DBFS exploration strategy for a broad spectrum of
problem instances and sizes for the 1|r;| Y U; scheduling problem.

A variation of the BB&R algorithm with the DBFS exploration strategy is pre-
sented in Chapter 4 for solving the 1|r;| > ¢; scheduling problem [55]. Several memory-
based dominance rules for the 1|r;| Y t; scheduling problem are incorporated to the
BB&R algorithm. A new modified dynamic programming algorithm is also presented
to efficiently compute lower bounds for the 1|r;|>_ ¢; scheduling problem. Compu-
tational results are reported, which show that the BB&R algorithm with the DBFS
exploration strategy outperforms the best known algorithms reported in the literature
[4, 27, 71, 72, 76).

Chapter 5 also presents a BB&R algorithm for solving the 1| > ST,4| > t; schedul-
ing problem [54]. The Best First Search (BFS) exploration strategy and a new
memory-based dominance rule are incorporated into the BB&R algorithm, which effi-
ciently solves the 1| > STy4| > t; scheduling problem. A counterexample to a known
dominance rule presented in [72, 71} is also provided. New computational results are
reported that demonstrate the effectiveness of the algorithm.

Chapter 6 formulates a discrete optimization problem called the Preferred Pareto
Optimal Subset Problem (PPOSP) for the post optimality selection problem [53]. The
PPOSP helps decision-makers obtain a reduced subset of preferred Pareto optimal

solutions. Theoretical properties of the PPOSP are reported, and several algorithms



and heuristics are also presented.
The dissertation is summarized in Chapter 7. Some concluding remarks on the

BB&R algorithm and the PPOSP formulation are provided [53, 54, 56, 55].



Chapter 2

Background

Three single machine scheduling problems are used to establish the effectiveness of
the BB&R algorithm proposed in this dissertation. Scheduling problems are com-
mon combinatorial optimization problems that have attracted widespread interest
within the domains of manufacturing, transportation, computer processing, produc-
tion planning, as well as computational complexity theory [8, 13]. These problems
involve solving for an optimal schedule under various constraints and objectives (e.g.,
machine environments, job characteristics). For example, single or multiple machines,
job shop or flow shop models, and job preemptions are all variants of scheduling prob-
lems. Various objectives include minimizing makespan, number of late jobs, and total
tardy time; see [8, 13, 44, 62, 87, 93] for reviews of various scheduling problems.

An overview of B&B algorithms used for solving the scheduling problems, and
meta-heuristic methods used for post-optimality selection are provided in this chapter.
This chapter is organized as follows. Section 2.1 provides a brief introduction to B&B
algorithms, while Section 2.2 provides a brief introduction to meta-heuristic methods

for multi-objective combinatorial optimization.

2.1 Branch and Bound

B&B algorithms are one of the most common techniques for solving large N P-hard
combinatorial optimization problems [39, 104]. Solving these NP-hard combinato-

rial optimization problems to optimality can be very challenging. B&B algorithms



are general search methods that implicitly search the entire feasible solution space
to find an optimal solution. To apply B&B algorithms, there must be a means of
computing lower and upper bounds on an instance of the combinatorial optimization
problem, and a means of dividing the feasible region of a problem to create smaller
sub-problems. Various parameters and components of a B&B algorithm must be
tailored based on the specific definition of the combinatorial optimization problem.

The underlying concept for any B&B algorithms is divide and conquer. The orig-
inal problem is divided into many smaller sub-problems. These smaller sub-problems
can be either solved or eliminated for consideration based on bounding information
generated from other sub-problems. This allows the B&B algorithm to implicitly
enumerate the feasible solution space without examining all feasible solutions. In
general, a B&B algorithm can be viewed as building and exploring a search tree
that represents the entire feasible solution space. The two main components for any
B&B algorithm are the branching scheme, which constructs the search tree, and the
bounding scheme, which prunes and eliminates branches from the search tree.

The branching scheme consists of partitioning the entire feasible solution space
into smaller and smaller subsets. Each subset can be further divided into smaller
subsets. Each node in the search tree represents a subset, and the order of visiting
each subset is part of the exploration strategy. The exploration strategy consists
of two interrelated components, a heuristic function that measures the goodness of
each node, and an overall tree traversal scheme. Together they determine a range of
exploration strategies, from a depth-first search strategy, where the heuristic function
depends on the depth of a node, to a best-first search strategy, where the heuristic
function value takes priority.

The bounding scheme determines what branches of the search trees still need to
be explored. One key component is the bounding function. Such a bounding function

estimates how good a feasible solution may be generated from exploring a particular



node. If the bounding function gives a tight bound, then the node can be prune or
fathomed. In addition to pruning by bound, dominance relationships may also be used
to reduce the number of branches in the search tree. A node dominates another node
if the dominated node can only lead to solutions that are no better than solutions
found by exploring the dominant node. These dominance relationships are typically
problem specific, and are dependent on the characteristics of the solution structure.

The BB&R algorithm [55, 54, 56] considers a new technique within the general
B&B algorithm framework. The key component of the BB&R algorithm consists of
using enhanced memory-based dominance relationships, where states are memorized
and compared. A new exploration strategy, namely the Distributed Best First Search
(DBFS), which exploits the benefits of both the depth-first search strategy and the
best-first search strategy, is also incorporated into the BB&R algorithm. Chapters 3,
4, and 5 introduce variations of the BB&R algorithm for three different scheduling
problems.

The use of dominance relationships in B&B algorithm is not new. The concept of
storing states in memory to help build an optimal solution is also not an entirely new
concept. Dynamic programming [9] shares a similar concept, where optimal solutions
are built backwards, following a sequence of optimal decisions. Tabu search [40] stores
previously visited solutions for guiding the local search process. As mentioned above,
dominance rules are problem dependent. Note that there are some similar concepts in
the artificial intelligence planning community. Heuristic searches [105, 106] are used
to solve large planning problems. These heuristic searches are typically graph-based
and are used to explore large state-spaces. The objective of these heuristic searches
is to find a path from a node representing a start state to a node that represents a
goal state. Every visited node in the search process is stored in memory. By storing
all nodes, this avoids exploring nodes that have previously been visited. This idea of

avoiding duplicates of previously visited nodes is similar to the dominance rules used



in the BB&R algorithm.

The general framework of the BB&R algorithm are outlined by the following steps:

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

Step 8:

Step 9:

Step 10:

Step 11:

Compute upper and lower bounds ub and [b for the optimization problem.
Generate a root node.
Insert the root node into a heap.

If the heap is not empty then go to the next step. Otherwise, the optimal

solution is found and the algorithm stops.
Obtain a current node by removing the top node from the heap.

Using non-memory based dominance rule filter out the possible branching

from the current node.

For each new subproblem use memory-based dominance rule to further elim-

inate dominated branches.
For each remaining subproblem compute a lower bound [b.

If Ib > ub then prune the current node by going to Step 6. Otherwise, go to

the next step.

For each remaining subproblem generate a new node and add the new node

to the hash table (for memory-based dominance rules) and the heap.

Go to Step 6.

Note that the heap data structure can be interchange with other data structure

changing the exploration strategy.



2.2 Meta-heuristics

Although exact algorithms like B&B algorithms guarantee finding the optimal solu-
tion, they are often impractical for large combinatorial optimization problems. In the
last few decades, there has been an increasing interest in meta-heuristics methods
for solving combinatorial optimization problems. The three most popular approaches
are simulated annealing, tabu search, and evolutionary algorithms. Meta-heuristics
methods do not provide any guarantees and could lead to sub-optimal solutions (see
[11] for a survey of meta-heuristics methods for combinatorial optimization problems).
The second topic of interest in this dissertation addresses post-optimality selection for
multi-objective combinatorial optimization problems. This section provides a brief
overview of the different meta-heuristic used.

Simulated annealing, as the name suggests evolved from the idea of the anneal- -
ing process, the gradual solidification process of cooling of a liquid. Several multi-
objective simulated annealing algorithms (MOSA) have been proposed. Some refer-
ences include [21, 49, 100]. The differences across these proposed MOSA are their
implementation on scalarization of the objective functions, neighborhood functions,
and the temperature adjustment rules for varying the acceptance probability.

Another common method is tabu search, a memory based method. The key
concept is the incorporation of a tabu list, which memorizes previously visited states.
The tabu lists are used to guide the search process into unexplored regions of the
search space. Some references for multi-objective tabu search (MOTS) include [7, 37,
47). The differences across these MOTS are their implementation on using multiple
tabu lists for each objective function and the variation on using short, intermediate,
and long term memory tabu lists.

Perhaps the most popular of the three methods discussed here are evolutionary

algorithms. Evolutionary algorithms have been the dominant focus in multi-objective



combinatorial optimization. The fundamental concept underlying these methods is
survival of the fittest. These are population dependent approaches, where solutions
compete among each other and are modified based on evolution procedures. Several
surveys and books in multi-objective evolutionary algorithms have been published in
recent years, including [18, 19, 20, 28, 29, 46]. A few popular evolutionary algorithms
include Multi Objective Genetic Algorithm [35], Non-dominated Sorting Genetic Al-
gorithm II [30], and Pareto Archived Evolution Strategy [59].

Combinations of the different approaches mentioned above have also been pro-
posed for multi-objective combinatorial optimization problems, including combina-
tion of simulated annealing and genetic algorithms [15], combination of local search
and genetic algorithms [48], and interactive methods with simulated annealing and

tabu search (78, 92].
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Chapter 3
The 1|r;| Y U; Scheduling Problem

The scheduling problem addressed in this chapter is the single machine scheduling
problem, denoted as 1|r;|>_ U; [68]. The problem consists of a set of jobs J =
{1,2,...,n} to be scheduled in sequence, where associated with each job is a release
time r;, a processing time p;, and a due-date d;. The indicator variable U; = 0 if
job 7 is scheduled on time, and U; = 1 if job 4 is late. A job is considered late if the
completion time ¢; of a scheduled job i is greater than its due-date d;. By design, late
jobs can be arbitrarily appended to the end of the sequence of on-time jobs. Without
loss of generality, assume that r; +p; < d; for all i = 1,2,...,n. The objective of the
1Jr;i] > U; scheduling problem is to minimize the number of late jobs, min) ., Uj,
where jobs are scheduled on a single machine without preemptions.

The 1|r;] > U; scheduling problem is NP-hard [68]. The more general prob-
lem, where jobs are weighted, 1|r;] > w;U;, is NP-hard in the strong sense [68].
Polynomial-time special cases of 1|r;| Y U; include when the release times are equal
or when the jobs are similarly ordered (i.e., 7; < 7; = d; < d;); these can be solved
in O(nlogn) time {79, 66, 58|.

Exact methods for solving the 1|r;| >~ U; scheduling problem include branch and
bound (B&B) algorithms [76, 6, 27], a mixed integer linear program formulation [63],
and a combination of constraint propagation and B&B methods [5]. Dauzére-Péres
and Sevaux [26] also propose a Lagrangean relaxation algorithm based on a new mixed
integer linear programming formulation. Dauzere-Pérés [25] provides lower bounds

based on a relaxation of a mixed integer linear programming formulation as well as

11



the minimizing Late Job (MLJ) heuristic. Meta-heuristics such as genetic algorithms
have also been developed and applied to the problem [94]. M’Hallah and Bulfin [76]
and Peridy et al. [86] also present results for the weighted version of the scheduling
problem.

This chapter introduces the Branch, Bound, and Remember (BB&R) algorithm,
an exact algorithm that can be used to solve the 1|r;| >_ U; scheduling problem. Sev-
eral dominance rules for the 1|r;| > U; are presented in the next two sections, including
enhancements to two previously known dominance rules as well as a new memory-
based dominance rule. A new dynamic programming algorithm is also introduced
and used to compute tighter upper bounds for the 1|r;| 3" U; scheduling problem. A
BB&R algorithm using the Distributed Best First Search (DBFS) exploration strat-
egy [55] is described and compared to the traditional depth-first search (DFS)and
best-first search (BFS) exploration strategies. The computational results reported
indicate that the BB&R algorithm outperforms the current best known algorithms.

The chapter is organized as follow. Section 3.1 describes three nonmemory-based
dominance rules for the 1|r;| > U; scheduling problem: the Early Job Rule (EJR),
the Nearly Due Date Order Rule (NDDOR), and the Idle Time Rule (ITR). Section
3.2 describes a new memory-based dominance rule as well as a proof showing that
the dominance rules presented in this chapter can be combined to form an exact
algorithm. Section 3.3 provides details of the BB&R algorithm with the DBFS ex-
ploration strategy. Computational results are reported in Section 3.4, followed by

concluding comments in Section 3.5.

3.1 Dominance Rules

This section formally presents three dominance rules, two of which are extensions

of dominance rules introduced in Baptiste et al. [6] and Dauzére-Péres and Sevaux
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[27]. A brief introduction to dominance rules, as well as the necessary notation are
provided.

Dominance rules are properties that exploit the structure of optimal solutions,
and hence, can be used as pruning strategies. More specifically, these rules identify
properties that at least one optimal solution must satisfy. Therefore, these dominance
rules can prune many solutions, including optimal solutions. However, they will not
prune all optimal solutions. Baptiste et al. [5, 6] present several dominance rules
that they incorporated into their B&B algorithm. Dauzére-Pérés and Sevaux |26, 27|
also suggest a dominance rule incorporated into both their B&B algorithm and their
Lagrangean relaxation method for a mixed integer programming formulation. These
dominance rules are designed to provide a significant reduction in the search space.

To describe these dominance rules, the following notations and assumptions are
needed. Jobs are assumed to be sorted by due-date (ie., i < j = d; < d; V (d; =
di Ar; <1j)). Let 0 = (01,09,...,0,) be a sequence of on-time jobs, where ¢; € J

fori=1,2,...m. Let

e ¢, denotes the completion time of the sequence of on-time jobs,

e c,, denotes the completion time of job ¢; (define ¢,, = 0),

e s, denotes the start time of job o; (define s,,.., = ¢,),

e S, = {01,09,...,0m,} denotes the set of jobs that have been scheduled on time,
e T, denotes the set of jobs that must be tardy,

o I, =J\ (S, UT,) denotes the set of unscheduled free jobs,

e [, denotes the set of free jobs that must be on-time,

e 7, = max{c,, min;cr, 7;} denotes the earliest start time for the next possible

job that can be scheduled,
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e TP, =73 " py denotes the sum of the processing times for the scheduled jobs.

Given a sequence o = (03, ...,0,,) of on-time jobs, assume that jobs are started as
soon as possible, i.e., s,, = max(cy,_,,70,)-

Baptiste et al. [6] present a dominance rule that identifies jobs that must be on
time; the enhanced version of this dominance rule will be referred to as the Farly
Job Rule (EJR). Dauzére-Pérés and Sevaux [27] present a dominance rule that is
based on the due-dates of the jobs; the enhanced version of this dominance rule will
be referred to as the Nearly Due Date Order Rule (NDDOR). These two dominance
rules are guaranteed (individually) to not prune all optimal solutions. Unlike the
previously proposed dominance rules, these dominance rules are dynamic (i.e., they
can be applied when constructing the sequence of on-time jobs). Note that, dynamic
dominance rules are not new; Baptiste et al. [5] applied dynamic dominance rules
along with their global constraint propagation method.

Baptiste et al. [6] present the EJR dominance rule as a pruning rule based on
their decomposition of the search space. The original dominance rule proposed by
Baptiste et al. [6] considers only static parameters, such as job processing times,
release times and due-dates, while the EJR is dynamic, in that it considers job start
times and completion times, which are sequence dependent variables. The EJR is

now formally defined.

Definition 3.1.1 Farly Job Rule (EJR)
A sequence of on-time jobs 0 = (0q,09,...,0,) satisfies the Early Job Rule if the
following condition holds: For all i € T,, there does not exist 05, j = 1,2,...,m such

that (p; < po; V (Pi = po; Nt < 05)) Amax(cs,_,,7:) + py < min(d;, 55,,,)-

The NDDOR dominance rule is motivated by the observation that among the
on-time jobs, those with earlier due-dates should be scheduled first. The NDDOR is

a stronger version of a dominance rule proposed in Dauzeére-Péres and Sevaux [27].
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The NDDOR is more restrictive since it considers the start times of scheduled jobs as
opposed to only the release times. Like the EJR, it is dynamic and provides greater

pruning. The NDDOR is now formally defined.

Definition 3.1.2 Nearly Due Date Order Rule (NDDOR)
A sequence of on-time jobs 0 = (01,03, ...,0y) satisfies the Nearly Due Date Order

Rule if the following condition holds: for j =2,...,m (0;_1 < 0;) V (S¢;_, < Tq;)-

In addition to the EJR and NDDOR, a simple Idle Time Rule (ITR) can further
reduce the number of solutions that need to be examined. The ITR is now formally

defined.

Definition 3.1.3 Idle Time Rule (ITR)
A sequence of on-time jobs 0 = (01,09, ...,0m) satisfies the Idle Time Rule if the
following condition holds: For all j =1,2,...,m — 1, there does not exist k € J\ S,

such that max(rg, ¢s;) + pr < min(dy, s4,,,)-

The ITR eliminates unnecessary idle time from sequences of on-time jobs. The
motivation behind this rule suggests that jobs should be scheduled as soon as possible.
Idle time places more time constraint on unscheduled jobs, and hence, should be
eliminated.

All three dominance rules introduced in this section can be used simultaneously to
reduce the solution space while not pruning out all optimal solution. This is formally
stated in Theorem 1. The following definitions are needed prior to presenting this

result.

Definition 3.1.4 Let z be the number of on-time jobs in an optimal schedule. Let

1 of the machine is idle during (t — 1,1),
I(o,t)=

0 otherwise.
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Let
e () denote the set of all optimal sequences,

VM={ceQ:TP, <TP; VY5 e Q},

02 = {U ey g i< Y ies; t VO € Ql},

0 = {0' €02 tI(0,t) > N tI(5,t) V6 € Qz} ,

W ={oc:Y 7 io; >>7 1 Vo€ Q®}.

Theorem 1 If = (01,02,...,0,) € Q*, thend™ =(01,02,...,0m) satisfies the EJR,

the NDDOR, and the ITR, form=1,2,...,z.

Proof: Suppose 6™ violates the EJR. Then there exists a tardy job t € Tzm and

an on-time job o; € Szm such that
(pe < ps; V(P = ps; At < 3;)) A (max(cs,_,, i) +p < mindy, s5,,,)).

This implies that a new sequence ' = (01, 09,. ..,0;-1,t,0;+1,. . ., 0;) of on-time jobs
can be created by replacing job &; with job ¢. This new sequence has the same number
of on-time job as @, and is therefore optimal. If p, < pg,, then TP; < TP;, which
contradicts that & € Q* If p, > ps,, then p, = ps; At < 3;, which would imply
TPy =TP; and ). 5,1 < > ics, i which contradicts that 7 € Q*. Therefore, 7™
must satisfy the EJR.

Now suppose o™ violates the ITR. Then there exists a job k € J\Ss= and j,
1 < j < m—1, such that max(r, c5,)+px < min(dy, s5,,,). This implies that k can be

scheduled between 7; and o;;1 without changing the starting times of any of the other

jobs. If k & {Om+1,--.,0,}, then the sequence (71,03, ...,0;,k,0,41,...,0,) has z+1
on-time jobs, which contradicts the optimality of &. Therefore, k € {Trmt1,...,0,}-
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Suppose k = 0; for some m +1 < ¢t < z and let & = (0y,02,...,04,k,0;+1,
v.y0t—1,0¢41, - - -, 0z). Then 6’has the same number of on-time job as & and is there-
fore optimal. Furthermore, TPy = TPy and } ;e , ¢ = Y ics, 1 but S tI(3't) >
Zf;l tI (G,t), which contradicts that G € Q*. Therefore, 3™ must satisfy the ITR.

Now suppose 6™ violates the NDDOR. Suppose two consecutive jobs, o;_; and 7,

violate the NDDOR (i.e., Ej_l > ?fj /\Saj_i > 7‘5].). Let 0/ = (6'\1,6'\2, ,a"\j__z, Ej, Ej_l,
Gjt1, - --,0z) be the schedule obtained by interchanging these two jobs. Then 7;_; >

0; implies ds,_, > dg; which then implies that both jobs will be on time. Further-
more, sz,_, > Ts;, implies that G; will satisfy its release date in &’. Therefore, the
interchange creates a new optimal schedule. ' and @ contain the same set of jobs and
the machine is idle during precisely the same moments in time, hence T P5 = T F;,
Ties, i = Tuasy b and TP 1 (7,8) = Y ¢1(5,1). But Yo, i, > Yo, i3
which contradicts that & € 2*. Therefore, ™ must satisfy the NNDOR. O

3.2 Memory-based Dominance Rule

This section describes the General Memory Dominance Rule (GMDR), used in the
BB&R. algorithm presented in Section 3.3. A proof is provided showing that the
GMDR can be used with the EJR, the NDDOR, and ITR such that there exists an
optimal solution that satisfies all the dominance rules.

Similar to the dominance rules described in Section 3.1, memory based dominance
rules (MBDR) are also used to reduce the search space. Unlike the other dominance
rules, they do not exploit the structure of optimal solutions, but rather compare
partial sequences of on-time jobs and determine whether a particular partial sequence
is guaranteed to lead to a solution that is at least as good as other solutions found

by the other partial sequences. The GMDR is now formally defined.

Definition 3.2.1 General Memory Dominance Rule (GMDR)
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Let 0 = (01,09,...,0m) and 6 = (61,02, ...,04) be partial sequences of on-time jobs.

Then o dominates 8 if (Fy 2 Fs5) A (7, < 75) and one of the following holds:

1. m>gq

2. (m=q)A (TP, <TPF;)

3. (m=q) AT, = TP A (Sics, i < Tics, 1)

4. (m=q)A TP, = TP (Sics, i = Sies, ) A (S 1 (0,8) > Xy t1 (5,1))

5. (m=q)A(TPs = TP)A (Sies, i = Sies, 6) A (z:f;l tI (o,t) = S 1 (6, t))

A (27;1 i0; > Zg=1 i6;)

The GMDR suggests that given two partial sequences of on-time jobs ¢ and ¢, if
o dominates §, then it is unnecessary to evaluate full sequences of on-time jobs that
are constructed by scheduling more jobs onto the end of 6, and that it is sufficient to
only evaluate full sequences of on-time jobs that are constructed by scheduling more
jobs onto the end of o.

Theorem 2 formally states that the GMDR can be used simultaneously with the
EJR, NDDOR, and the ITR without pruning out all optimal solutions.

Theorem 2 [f 0 = (01,02,...,0,) € Q4 then 69 = (01,02, ...,0,) 1s not dominated
by any other sequence, forq=1,2,...,z.
Proof: Suppose 0™ = (01,03, . ..,0.,) dominates 0? = (01,04, ...,0,) for some ¢

such that 1 < ¢ < z. Fym D Fzq and 7ym < T3¢ imply that the sequence (G411, 042, - - -,
0,) of remaining jobs can be appended to ¢™ to obtain a new feasible sequence
o =(01,02,..., Om,04+1,0¢+2, - - -, 0z). The remainder of the proof consists in show-
ing that if any of the five conditions in the GMDR hold true, then it would contradict

that ¢ € Q%
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Case 1 m > q. Then o is a feasible sequence that contains more on-time jobs than

o, which contradicts the optimality of T.

Case 2 (m = q) A (TFPym < TPs4). Then o is a feasible sequence that contains the
same number of on-time jobs as T, hence ¢ is an optimal sequence. This also holds
true in all the following cases. T Py,m < T Psq implies TP, < T Pz, which contradicts

that & € Q4.

Case 3 (m=g) A (TPym =TFs) A (Sics,m < Liesyy 1) - Then TPy = TPy
implies TPy = TPs. Furthermore, 3 g . 1 < D ics .t tmplies 3 i @ < D s 1,

which contradicts that & € Q2.

Case 4 (m=q) A (TPym = TPs0) A (Cicgm? = Yoies,a ) N (Timy tI (0™,8) >
Zf;l tI(09,t)). Then TP, = TF; and 3 ,c5 1 = ) ics, b Furthermore,Zf;l tl
(o™, ) > S0 t1 (59, t) implies 0, t1 (0,t) > 2 t1(7,t) , which contradicts that

=LA

Case 5 (m = QA (TFym =TPz) A (Zies,,m i = ZieSaq Z) A
(zf;l tI (o™, t) = S0 tI (59, t)) AT io; > 3L 46;). Then TP, = TP;,
Uies,® = Dies, b and St (o,t) =30 t1(5,t). Furthermore, 5, io™ >

1,107 implies > t0; > 37| 10;, which contradicts that & € Q*. O

3.3 Branch, Bound, and Remember Algorithm

This section introduces the BB&R algorithm for solving the 1|r;| > U; scheduling
problem. Section 3.3.1 describes the bounding scheme, including a dynamic pro-
gramming algorithm that produces tighter upper bounds compared to other known
heuristics. Section 3.3.2 describes the branching scheme with two different explo-

ration strategies and illustrates how the dominance rules described in Sections 3.1

19



and 3.2 are used. Pseudo-codes for the BB&R algorithm are also provided in Section
3.3.2. In addition, Section 3.3.3 also describes an extension to the BB&R algorithm
that leads to further computational speed up.

The B&B algorithm presented in this chapter incorporates memory-based dom-
inance properties to prune a subproblem if it is dominated by another subproblem
that has already been generated. To implement this, it is necessary to store (remem-
ber) the subproblems that have already been generated (and hence the name Branch,
Bound, and Remember).

Note that the technique of memorizing previously visited nodes has been previ-
ously studied. In the scheduling domain, Jouglet et al. [50] have also used memory
to record “no-good recording” and “better sequence” to prune dominated solutions
in the solution space. Peridy et al. [86] also introduces the use of short term schedul-
ing memory for solving the 1|r;| > w;U; scheduling problem. Dynamic programming
techniques [10, 84] share a similar concept. Morin and Marsten [80] tried to combine
dynamic programming and B&B strategies to improve computational efficiency of
dynamic programming. Heuristic searches [105, 106] have been used to solve large
planning problems. These graph-based searches store previously visited nodes in the
search tree to avoid revisiting previously explored paths, similar to the memory-based

dominance rules used in the BB&R algorithm.

3.3.1 Bounding Scheme

This section provides an overview of the Minimizing Late Job (MLJ) heuristic [25],
a dynamic programming algorithm [58], and an extended dynamic programming al-
gorithm based on Kise et al. [58]. These heuristics are used to calculate lower and
upper bounds for the number of late jobs. These bounds provide an estimate on the
quality of a branch. The efficiency and the quality of the lower and upper bounds

can lead to significant performance improvements to the overall algorithm.
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The bounding scheme works as follows. Initially, prior to any branching, an upper
bound is computed based on the MLJ heuristic and the extended dynamic program-
ming algorithm; the minimum of these two bounds is retained. As the branching
process proceeds with additional jobs being scheduled, lower bounds are computed
based on the remaining free jobs, using a dynamic programming algorithm with re-
laxed release times and due-dates. If the lower and upper bounds are tight, then the
branch is pruned.

Kise et al. [58] propose a dynamic programming algorithm for solving a special
case of the 1|r;| 3" U; scheduling problem, where the jobs are similarly ordered (i.e.,
r; < r; = d; < d;). This dynamic programming algorithm is incorporated into the
BB&R algorithm to generate lower bounds. Since the instances solved in this chapter
are generally not similarly ordered, the jobs’ release times and due-dates are relaxed
to generate the lower bound. Two separate lower bounds are computed based on
either relaxing the release times or relaxing the due-dates, where the maximum of the
two lower bounds is retained.

An extended dynamic programming algorithm (EDP) based on Kise et al. [58]
is used to compute an upper bound. The pseudo-code illustrated in Figure 3.1 out-
lines the new EDP algorithm. Let Jobs be the set of free jobs sorted in due-date
order. The function REPLACE(o, k), (see Figure 3.1), returns the shortest feasible
schedule by considering all schedules that replace a job in ¢ with job k. If no feasible
schedule exists, the function REPLACE(o, k) returns o. The function INSERT(o, k)
returns the shortest feasible schedule by considering all schedules that insert job k
into o. If no feasible schedule exists, the function INSERT(c0, k) returns o. The array
max-n_jobs(k) stores the maximum number of jobs that can be scheduled from the
subset of jobs, {Jobs{1], ..., Jobs[k]}. The matrix C(k, m) stores the earliest comple-
tion time for scheduling exactly m jobs among {Jobs[l], ..., Jobslk]} and Seq(m, k)

is the partial sequence of on-time jobs associated with C(k,m).
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The EDP algorithm follows the same basic recursion as in Kise et al. [58]. Let
Compy ,», be the best completion time for a partial sequence with m jobs, where
job k may (or may not) be scheduled. The recursion in the dynamic programming
algorithm in Kise et al. [58] is Compy, m, = min(Compy_1 m, max(Compg—1 m-1,Tk) +
px)- In order to compute Compg,,, the dynamic programming algorithm in Kise
et al. [58] considers two types of sequences; sequences of length m where job k
is not scheduled, and the sequence where job k is appended to a sequence with
length m — 1. Moreover, the EDP algorithm used in the BB&R algorithm considers
two additional type of sequences; partial sequences of length m — 1 where job k&
is inserted, and also partial sequences of length m where job k replaces another job.
These two additional types of sequences are generated by the functions REPLACFE and
INSERT (see Figure 3.1). By design, the EDP algorithm considers additional possible
schedules, and frequently generates tighter upper bounds than the MLJ heuristics.
Section 3.4 reports computational results comparing the EDP with the MLJ heuristic
described in this section.

Dauzere-Péres [25] introduced the MLJ heuristic, which is constructive and con-
sists of attempting to schedule new jobs with release dates earlier than the current
completion time of the last scheduled job. Jobs are also chosen in a way that mini-
mizes the completion time of the last scheduled job. The MLJ heuristic is also used
to compute the upper bound for the number of late jobs. This heuristic runs in O(n?)

time.

3.3.2 Branching and Dominance Scheme

This section describes how all the dominance rules are used in conjunction with the
branching scheme in the BB&R algorithm. At each branching stage in the search
tree, the sequence of on-time jobs is checked for consistency with the dominance

rules. The BB&R algorithm using the DBFS exploration strategy is described. The
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EDP(Jobs, R, D, P)
R, D, P are the release times, due-dates, and processing times respectively.
max.n_jobs = {0,...,0}, C = {{o0,...,00},...,{c0,...,00}}
max.n_jobs[l] = 1
C(1,1) = R(Jobs[1]) + P(Jobs[1])
Seq(1,1) = Jobs|1]
for k = 2 to the number of Jobs do
max_n_jobs[k] = max_n_jobs[k] + 1
for m = max_n_jobs[k] — 2 do
if C(k—1,m) < oo then
temp_seq = REPLACE(Seq(m, m), Jobs|k])
else
temp.seq = o0
end if
temp_seq2 = INSERT(Seq(m — 1,m — 1), Jobs[k])
if Complete_time(temp_seq) < Complete_time(temp_seq2) then
C(k,m) = Complete_time(temp_seq)
if Complete_time(temp_seq) < oo then
Seq(m,m) = temp_seq
end if
else
C(k, m) = Complete_time(temp_seq2)
Seq(m,m) = temp_seq2
end if
end for
if max_n_jobs[k] > 0 then
if C(k —1,1) < max(0, R(Jobs[k]) + P(Jobs[k]) then
C(k,1) =C(k —1,1)
else
C(k,1) = max(0, R(Jobs[k]) + P(Jobs[k])
Seq(1,1) = Jobs[k]
end if
end if
max.n_jobs[k] = max{j : C(k,j) < oo}
end for

Figure 3.1: Upper Bound Extended Dynamic Programming Algorithm for the
1|r;| >- U; Scheduling Problem
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pseudo-codes for the BB&R algorithm is also presented.

Given a particular state (o, F,,T,, E,), a new state is explored by adding a new
job to the partial sequence o, (i.e., a new sequence (01, 02,...,0m, fr) Where m is
the length of o and f, € F,). The new state is denoted by (¢, F., T, E"). The
dominance rules are used in two ways: to filter F;, to find the set of jobs that are free
and satisfy the dominance rules; and once the new partial sequence is scheduled, to
reduce the number of further branching needed from that state.

The NDDOR and the ITR are initially used to filter F,. Only jobs that are in
F, and satisfy the NDDOR and the ITR are considered for branching. If no such
jobs can be found, then the current branch is pruned. Scheduling a new job modifies
the previous F,, T,, and E,, where T, is modified by checking each job in F, for
tardiness, and E, is computed based on the EJR, (see Section 3.2). The new set of
tardy jobs and early jobs are then checked for consistency with the EJR. If any of
the late jobs becomes an early job, or if a tardy job does not satisfy the EJR, then
the branch is pruned. Note that in Baptiste et al. [5], the dominance rule is used
as a preprocessor to identify unscheduled jobs to be considered for branching, which
must be either on-time or late. The EJR embedded in the BB&R algorithm is used
to actively prune further branching.

If the new state (after branching) satisfies the EJR, the NDDOR, and the ITR,
then the GMDR is applied. The set of free jobs F, is used as the hash key to find
the corresponding entry in the hash table. If this entry in the hash table is empty,
then the current state is stored; otherwise, the GMDR is used to compare the current
state and the previously stored state(s). If the new state dominates the previously
stored state(s), then the new state replaces the old state(s) in the hash table. If any
old state stored in the hash table dominates the new state, then the current branch
is pruned.

The combination of the EJR, the NDDOR, and the ITR, with the addition of the
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GMDR significantly reduces the search space for the BB&R algorithm. Section 3.2
provided the proof showing that combining all the dominance rules will not eliminate
all optimal solutions (i.e., the BB&R algorithm is exact). The pseudo codes for the
BB&R algorithm with the DBFS exploration strategies are now presented.

The DBFS exploration strategy is designed to find an optimal solution earlier
than Depth-first search. The DBFS is a hybrid betweén DFS and Best-first search
(BFS). In DBFS, states are explored based on the length of the sequence of on-time
jobs and a best-measure, a heuristic function that evaluates the potential of a state
leading to an optimal solution. The DBFS explores states by sequentially considering
states with longer and longer sequence of on-time jobs. Let level 1 states be all states
with a sequence of on-time jobs of length 1, and let level 2 states be all states with a
sequence of on time jobs of length 2, and so forth. The DBFS starts by choosing a
state at level 1 to explore. It then chooses a state at level 2 to explore and continue
until it reaches the deepest level, at which time it will return to level 1 and repeat.
When the DBFS chooses a node at level k, it chooses the one with the highest best-
measure value. The children of the chosen state are generated and added to level
k+ 1. An outline of the DBFS exploration strategy is given in Figure 3.2. Note that
there may be iterations in the search process where some levels may not have any
unexplored states. In such cases, no new states are explored for that iteration, and
no new states are added to the next level. The pseudo-code for the BB&R algorithm
with the DBFS (BB&R-DBFS) implementation is given in Figure 3.3.

In the BB&R-DBFS pseudo-code, a heap structure is needed to store states for
each level of the search tree. When a state is expanded by scheduling each of the jobs
in PF,, each new state is verified to satisfy the EJR and the GMDR prior to being
added into the next level heap. Note that there may exist states in the heap that
are dominated by the GMDR after they have been added to the heap. For example

state B may dominate state A by GMDR, but the predecessor of state A may have
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Distributed Best First Search

Initialize level 0 by storing the root node
while unexplored states exist do
for each level ¢, 0 to maximum depth do
Expand the best node in level i
Store all the children of the best node in level 7 + 1
end for
end while

Figure 3.2: Outline of DBFS

been explored before the predecessor of state B, which results in adding state A to
the heap before state B. A simple dominance bit (i.e., an indicator that indicates
a state is dominated if set), can be used to keep track of such states to avoid extra
exploration of state A. In addition, BB&R-DBF'S uses a Best_Measure heuristic. T'wo
Best_Measure heuristics are considered in this chapter. The first, denoted by DD is
based on due-date order. That is, if o is a sequence of on-time jobs in the current
state with m jobs, then Best = —1 % d,,,. This Best_Measure favors states with
sequences of on-time jobs with earlier due-dates. The second, denoted by RP, is more
sophisticated and takes earlier release times as well as the processing times of the
free jobs into consideration. Define w; = d; — max(7,,r;) for i € F, to be the time
window for each job i. The Best_Measure is defined as Best = 3, ., w;/p;. This
second Best_Measure prefers schedules with smaller value for 7, as well as schedules
with shorter free jobs in longer time windows. Note that BB&R-DFS also has an

implicit Best_Measure, which is based on exploring PF, in due-date order.

3.3.3 Enhancements to the BB&R Algorithm

This section describes an enhancement to the BB&R algorithm presented above.
The look-ahead NDDOR (LA-NDDOR) is based on the NDDOR. Suppose that

job i € PF, is appended to o to obtain ¢’ = (0y,...,0m, Omnt1) Where oy = i.
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BB&R-DB¥S(o, F,,T,, E,,7,,UB, hash_table, heap(l,..., size(F;))

LB = Lower_Bound(F,,7,)
if LB>UB then
return
end if
Initialize heap(1)
while heap is not empty do
for i=1—-UB do
cur_state = heap(i).pop
cur_lb = Lower_Bound(cur_state)
if cur_lb + size(cur_state.T,) < UB then
PF, = NDDOR(curstate.F,) and ITR((cur_state.F,)
for each j € PF, do
new_state.c = cur_state.c + 3
update new_state from cur_state
new_best = Best_measure(new_state)
Violated_.EJR = EJR(new_state)
Violated.GMDR = GMDR(new_state)
if not Violated_EJR A not Violated.GMDR then
Store(new_state) in hash_table
heap(i+1).add(new_state, new_best)
end if
end for
end if
end for
end while

Figure 3.3: BB&R-DBFS Pseudo-Code for the 1}r;| >  U; Scheduling Problem

Let k = min{h : h € F, \ {om41}}. If o1 > k and s,,,, > 7, then k cannot
be scheduled in position m + 2 because it would violate the NDDOR. Furthermore,
it cannot be scheduled in any later position because it will violate the EJR. To see
this, let " = (o1,...,0my Omt1,...,04). 04 > k because o, € Fy \ {om+1} and
k =min{h : h € F; \ {om+1}}. In addition, rx < s,,,,, < So,, therefore, the NDDOR
will be violated if k£ is scheduled in position ¢ + 1. Consequently, the NDDOR. will

prevent job k from being scheduled on time in any super-sequence of ¢’. Thus job

k should be added to T, instead of F,,. This test can be repeated for each job in
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LA-NDDOR( F,,0 = (01,..-,0m),Om+1)
Sort F, in Due-Date order, F' = {},T" =1,
for k € F, \ {om+1} do

if ¢4,,,.; + px > di then

T =T'U{k}
else
if F={} and (o041 > kA S5,.,, > 7%) then
T =T U{k}
else
F'=F'U{k}
end if
end if
end for

Figure 3.4: LA-NDDOR Pseudo-Code for the 1|r;| > U; Scheduling Problem

F,\ {0ms1}, in due-date order, until one is found that can be scheduled in position
m+ 2.

The LA-NDDOR can enhance the algorithms in two ways. First it produces a
tighter lower bound earlier in the branching process, and second, if any of such jobs
become early, then the entire branch will be pruned by the EJR. Figure 3.4 provides
the pseudo-code for this enhancement.

The discussion above yields the following theorem which states that the LA-
NDDOR may be used in the BB&R algorithm in conjunction with the other domi-

nance rules such that the BB&R algorithm remains exact.

Theorem 3 The Branch, Bound, and Remember Algorithm using the look-ahead ND-

DOR is an ezact algorithm.

3.4 Computational Results

This section reports computational results for the BB&R-DBFS algorithm described

in Section 3.3. The computational results of the DBFS exploration strategy are
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compared against the computational results of the DF'S and the BFS exploration
strategies. Computational results for using the two different best-measures as well as
the LA-NDDOR are also reported. This section also reports computational results
for comparing the EDP and MLJ heuristics described in Section 3.3.1.

The effectiveness of the BB&R algorithm is evaluated over 7,200 randomly gen-
erated test instances. These test instances were generated using the same gener-
ation scheme described in Baptiste et al. [5], based on four parameters: number
of jobs, processing time range, maximum slack margins, and machine load, de-
noted as (1, [Pmin; Pmax|, $1@Ckmax, load). The slack margin is defined for each job
as d; — r; — p;. The machine load is defined to be the ratio between the sum of the
job’s processing times and the difference of the maximum due-date and the mini-
mum release time. The parameters used for generating the test instances are n =
{80,100, ...,300}, [Pmin,Pmax] = {[25,75],[0,100]}, slackmax = {50,100,...,500},
and load = {0.5,0.8,1.1,1.4,1.7,2.0}. For each combination of parameter settings,
five random instances are generated for a total of 7,200 instances. The parameters
used in generating the test instances in this chapter are identical to the parameters
used in generating the instances in Baptiste et al. [6] and Dauzere-Pérés and Sevaux
[27]. The experiments in this chapter were executed on a 3 GHz Pentium D PC.

Several variations of the BB&R algorithm are investigated. The DBF'S exploration
strategy is compared with the DF'S and the BFS exploration strategies. Two different
best-measures, described in Section 3.3.2, are also tested in conjunction with the
DBFS exploration strategy. These two variations are denoted as BB&R-DBFS-DD
and BB&R-DBFS-RP. The DD best-measure favors jobs with earlier due-dates, while
the RP best-measure favors jobs with earlier release times and shorter processing
times.

Table 3.1 reports the average and maximum running time for the BB&R-DBFS-
DD and BB&R-DBFS-RP algorithm. The test set is organized by n—pumin — Pmax, With
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each instance in the test set restricted to a one hour total processing time limit. Both
variations of the BB&R-DBFS were able to solve all instances to optimality. For
some of the larger instances, BB&R-DBFS-DD had significantly longer maximum
running time compared to BB&R-DBFS-RP. The BB&R-DBFS-RP was able to solve
all instances in under fifteen minutes, with the exception of the 260 — 0 — 100 and
300 — 0 — 100 instances. For the remainder of the chapter, the RP best-measure is
used for evaluting the variations and extension of the BB&R algorithm.

Table 3.1: 1|r;| Y. U; BB&R-DBFS Algorithms: Average amd Maximum CPU Time
(sec.)

BB&R-DBFS-DD BB&R-DBFS-RP
N — Pmin — Pmax AVE. Max Avg. Max

80-0-100 0.5 5.4 0.6 7.6
80-25-75 0.4 1.8 0.4 1.2
100-0-100 1.9 393.0 1.6 281.8
100-25-75 0.5 4.6 0.5 2.7
120-0-100 0.9 15.0 1.3 22.6
120-25-75 0.7 7.1 0.7 4.8
140-0-100 1.2 10.7 1.7 252.2
140-25-75 1.0 20.3 0.8 10.6
160-0-100 1.9 33.6 2.7 73.0
160-25-75 1.3 10.9 1.0 9.2
180-0-100 2.6 109.4 3.5 135.7
180-25-75 1.9 19.0 1.4 11.8

200-0-100 5.1 237.6 9.5 248.5
200-25-75 3.3 149.1 2.3 112.3
220-0-100 5.5 145.7 8.3 496.6

220-25-75 4.0 38.6 2.7 32.5
240-0-100 12.4 915.3 10.7 414.0
240-25-75 5.9 62.4 3.7 38.4
260-0-100 15.8 447.2 18.2 959.6
260-25-75 7.8 127.2 5.1 49.8

280-0-100 26.1 734.3 26.5 633.5
280-25-75 13.1 284.7 7.6 162.5
300-0-100 26.4 510.5 45.7 2924.3
300-25-75 19.6 439.7 11.5 234.5

Tables 3.2 summarizes the results of the test set with the LA-NDDOR extension.

Table 3.2 reports the average running time for the BB&R algorithm using the RP
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Table 3.2: 1|r;| Y U; BB&R Algorithms: Average CPU Time (sec.) with LAANDDOR
T = Pmin — Pmax  BB&R-DFS BB&R-BFS-RP BB&R-DBFS-RP

80-0-100 05 0.0 04
80-25-75 0.4 0.5 0.4
100-0-100 1.5 0.9 0.6
100-25-75 0.5 0.6 0.4
120-0-100 0.9 2.5 0.6
120-25-75 0.8 0.9 0.5
140-0-100 1.4 1.6 0.8
140-25-75 1.4 1.1 0.7
160-0-100 2.4 2.1 1.1
160-25-75 1.4 1.2 0.8
180-0-100 4.1 2.5 1.3
180-25-75 2.8 1.6 1.0
200-0-100 9.6 47 2.2
200-25-75 12.9 1.9 1.5
220-0-100 13.3 6.1 2.6
220-25-75 9.5 2.3 1.8
240-0-100 52.4 (2) 5.7 3.9
240-25-75 15.2 2.7 2.4
260-0-100 69.6 (1) 7.3 5.5
260-25-75 32.8 3.3 3.2
280-0-100 125.4 (5) 10.3 9.1
280-25-75 72.7 (2) 42 47
300-0-100 147.5 (5) 14.0 11.5
300-25-75 123.2 (2) 5.1 6.5

best measure with different exploration strategies. The DBFS exploration strategy
is compared with the DFS and the BFS exploration strategies. Table 3.3 shows the
standard deviation of the running time of BB&R-BFS-RP and BB&R-DBFS-RP.
The BB&R-DBFS-RP and the BB&R-BFS-RP were able to solve all instances to
optimality; however, BB&R-DFS was unable to solve 36 of the 7,200 instances. The
number in parentheses associated with some of the entries in Table 3.2 reports the
number of instances that were incomplete. The average running times reported in
Table 3.2 include those instances that were incomplete.

By using the LA-NDDOR, for the larger instances, BB&R-DBFS-RP was an order

of magnitude faster on average then BB&R-DFS. All instances were solved to opti-
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mality in less than eight minutes. On average, BB&R-DBFS-RP also out performs
BB&R-BFS-RP, moreover, Table 3.3 shows that for most of the instances, BB&R-
DBFS-RP has a standard deviation that is less than half of the standard deviation of
BB&R-BFS-RP. By design, the LA-NDDOR extension was able to reduce the number
of branches in the BB&R algorithm.

Table 3.3: 1|r;|>_ U; BB&R Algorithms: Standard Deviation in CPU Time (sec.)

with LA-NDDOR
" — Do — Pmme BB&R-BFSRP BB&R-DBFS-RP

80-0-100 2.6 0.2
80-25-75 0.5 0.1
100-0-100 2.7 2.3
100-25-75 0.6 0.1
120-0-100 16.7 0.5
120-25-75 1.7 0.3
140-0-100 4.9 0.6
140-25-75 2.5 0.5
160-0-100 5.3 1.2
160-25-75 1.8 0.5
180-0-100 7.6 1.6
180-25-75 2.7 0.9
200-0-100 25.3 6.1
200-25-75 3.9 34
220-0-100 26.1 3.9
220-25-75 4.5 2.1
240-0-100 21.8 8.0
240-25-75 4.4 2.8
260-0-100 41.0 9.7
260-25-75 5.6 3.9
280-0-100 68.8 22.1
280-25-75 8.7 7.9
300-0-100 64.9 34.0
300-25-75 8.5 10.9

M’Hallah and Bulfin [76} report the best computational results to date for solving
the 1|r;| >° U; scheduling problem. On average, their algorithm took 193.4 seconds
for solving instances with size n = 200 on a 1 Ghz Pentium IV PC. The BB&R-BF'S-
RP algorithm on average took 5.7 seconds, while the BB&R-DBFS-RP algorithm on
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average took 1.9 seconds. Although the experiments in these papers were executed
on different platforms, the average running time for the two variations of the BB&R
algorithm were two orders of magnitude faster, which clearly dominates the results

in M’Hallah and Bulfin (2007).

Table 3.4: 1|r;| >_U; BB&R-DBFS Algorithms: Average CPU Time (sec.) with

Different Dominance Rules
N — Pmin — Pmax W/0 EJR  w/o IRT w/o NDDOR w/o GMDR

80-0-100 0.5 0.5 0.5 13.6 (7)
80-25-75 0.5 0.5 0.5 12.3 (2)
100-0-100 0.8 1.1 2.3 67.6 (27)
100-25-75 0.6 0.6 0.5 42.0 (15)
120-0-100 0.8 1.4 1.1 84.3 (58)
120-25-75 0.8 1.0 0.7 64.5 (41)
140-0-100 1.1 2.3 1.4 .
140-25-75 1.0 1.6 1.0 -
160-0-100 1.6 3.7 2.4 -
160-25-75 1.2 2.3 1.1 -
180-0-100 2.1 5.5 35 -
180-25-75 1.7 3.4 1.7 -
200-0-100 3.9 10.1 7.6 -
200-25-75 3.0 5.9 2.8 -
220-0-100 45 13.4 7.6 -
220-25-75 3.5 7.9 3.2 -
240-0-100 7.5 20.9 14.8 -
240-25-75 49 11.4 45 -
260-0-100 10.5 30.6 24.3 -
260-25-75 6.5 15.6 6.2 -
280-0-100 18.3 49.4 457 -
280-25-75 10.1 22.7 9.6 -
300-0-100 24.5 61.8 41.8 ;
300-25-75 14.7 30.9 14.8 -

Table 3.4 and 3.5 reports the average and maximum running time for the BB&R-
DBF'S algorithm with RP best measure when each of the dominance rules described
in Section 3.1 and 3.2 is removed individually. The number in parenthesis in Table
3.4 reports the number of unsolved instances. These two tables provide an insight

to the relative impact of each of the dominance rules. The GMDR has the largest
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Table 3.5: 1|r;| Y. U; BB&R-DBFS Algorithms: Maximum CPU Time (sec.) with

Different Dominance Rules
N — Pmin — Pmax W/0 EJR w/0 IRT w/o NDDOR w/o GMDR

80-0-100 6.4 4.6 6.1 849.6
80-25-75 1.2 1.3 14 1653.1
100-0-100 75.9 78.7 990.8 1834.6
100-25-75 3.9 2.7 4.6 2755.4
120-0-100 94 9.6 27.6 1784.5
120-25-75 7.8 6.0 6.5 2096.0
140-0-100 10.4 21.7 21.6 -
140-25-75 13.5 16.9 11.1 -
160-0-100 26.8 48.9 45.5 -
160-25-75 8.5 12.1 15.0 -
180-0-100 25.8 56.2 153.3 -
180-25-75 14.1 23.7 16.1 -
200-0-100 161.5 283.7 457.5 -
200-25-75 177.0 167.7 146.9 -
220-0-100 65.6 156.8 190.6 -
220-25-75 43.8 66.8 43.7 -
240-0-100 309.7 474.7 905.6 -
240-25-75 49.0 83.3 . 53.5 -
260-0-100 156.0 349.6 957.2 -
260-25-75 67.0 1184 70.1 -
280-0-100 397.6 1027.1 1563.8 -
280-25-75 195.6 291.0 185.9 -
300-0-100 1787.1 1813.5 1126.4 -
300-25-75 299.2 265.8 405.6 -

impact on the performance of the BB&R-DBFS algorithm. Without GMDR, the
algorithm has difficulty solving all the test instances. At size n = 80, 100, 120, it was
only able to solve 98.5%, 93%, and 83.5% of the test instances respectively. By using
the GMDR, the BB&R-DBFS algorithm has over two orders of magnitude speed up
in computational time over the computational time when the GMDR is not in use.
Despite the overwhelming impact of the GMDR, the other dominance rules also
have a significant impact on the performance of the BB&R-DBFS algorithm as well.
On average, the BB&R-DBFS algorithm takes two times longer when the EJR or

the NDDOR is not used. For the larger instances, the BB&R-DBFS algorithm takes
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up to five times longer when ITR is not used. Table 3.5 shows that for the difficult
instances, each of the individual dominance rules can have a significant impact on
the degradation in the performances of the BB&R-DBF'S algorithm. Table 3.4 and
3.5 shows that on average, the ITR rule has a stronger impact than the EJR and
NDDOR on the performances of the BB&R-DBFS algorithm. However, in the worst
cases, Table 3.5 shows that both NDDOR and ITR have a significant impact on the
performances of the BB&R-DBFS algorithm.

In addition to the computational results for the BB&R algorithm, the test set was
also used to assess the effectiveness of the EDP described in Section 3.3.1. The column
labeled EDP in Table 3.6 reports the number of instances for which EDP provided
a tighter upper bound than MLH. The column labeled MLJ reports the number of
instances for which MLJ provided a tighter upper bound than EDP. Moreover, the
column labeled EDP Optimal in Table 3.6 also reports the number of times the upper
bound estimated by the EDP is equal to the optimal number of tardy jobs, and also
the average gap between the optimal number of tardy jobs and the estimated upper
bound.

The EDP heuristics clearly outperformed the MLJ heuristic. The EDP was able
to consistently find tighter upper bounds. For more than half of the smaller instances,
EDP was able to find the optimal solution. The tighter upper bound also contributed

to the overall effectiveness of the BB&R algorithm.

3.5 Conclusion

This chapter presents the BB&R. algorithm using the DBFS exploration strategy to
solve the 1|r;| 3" U; scheduling problem. The chapter provides enhancements to two
previously known dominance rules (reported by Baptiste et al. [6] and Dauzere-Péres

and Sevaux [27], respectively) and describes a new memory-based dominance rule.

35



Table 3.6: EDP vs. MLJ Upper Bounds Comparison for the 1|r;| Y U; Scheduling
Problem

N — Pmin — Pmax EDP  MLJ EDP Optimal Avg. Gap

80-0-100 228 8 190 0.41
80-25-75 174 7 186 0.41
100-0-100 236 9 162 0.56
100-25-75 194 10 174 0.45
120-0-100 251 7 133 0.77
120-25-75 218 10 149 0.57
140-0-100 270 7 126 0.78
140-25-75 221 7 148 0.64
160-0-100 280 4 114 0.93
160-25-75 242 7 118 0.8

180-0-100 271 6 103 1.06
180-25-75 247 4 111 0.92
200-0-100 282 1 82 1.22
200-25-75 257 6 100 0.99
220-0-100 282 3 85 1.29
220-25-75 259 6 88 1.17
240-0-100 286 4 88 1.33
240-25-75 264 3 87 1.21
260-0-100 290 1 73 1.49
260-25-75 264 11 77 1.35
280-0-100 292 2 68 1.65
280-25-75 275 4 64 1.5
300-0-100 293 4 66 1.88
300-25-75 269 4 71 1.57

This chapter describes how these dominance rules can be embedded in a new B&B
algorithm using an effective DBF'S exploration strategy. The resulting new algorithm,
BB&R, is proven to be exact. The BB&R-DBFS solved all 7,200 randomly generated
test instances to optimality, outperforming the current best known exact algorithms.
Furthermore, the LA-NDDOR extension provided additional computational speed
up. The running time for the LA-NDDOR extension in conjunction with the DBFS
exploration strategy is an order of magnitude faster than the BB&R-DFS variation.
The ITR rule and the NDDOR have the most impact on the performances of the

BB&R-DBFS algorithm.
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Like all B&B algorithms, improving the lower and upper bounds reduces its exe-
cution time. An extended dynamic programming algorithm is also presented and is
shown to significantly improve the upper bound estimation. The combination of all
the dominance rules, new exploration strategy, and improved upper bound computa-
tion demonstrate that the BB&R algorithm is very efficient.

The BB&R algorithm has been successfully applied to the 1|r;| > U; scheduling
problem. A natural extension to this work is to investigate other applications. One
immediate extension of the 1|r;| > U; scheduling problem is to investigate the total
tardiness scheduling problem, 1|r;|T" [51]. Chapter 4 introduces a BB&R algorithm
for the total tardiness scheduling problem and shows its effectiveness. There are
also practical military applications of the 1|r;] 3~ U; scheduling problem that involve
limited, highly valued assets that procéss certain tasks within a given time window
(e.g., a surveillance satellite that must photograph as many locations as possible
within its overpass time window.) Another military application of a limited, high
value asset is the Air Force Airborne laser (ABL) system, which employs a 100 ton
system of chemical lasers encased within a Boeing 747 aircraft designed for theater
ballistic missile (TBM) defense. In particular, the ABL system is designed to detect
the launch of a TBM, track its trajectory, and then destroy the missile using a high
powered (megawatt class) laser (which is achieved by heating the TBM’s own fuel
supply until the fuel explodes and destroys the missile.) Therefore, once the TBM’s
boost phase is complete, the ABL system is no longer effective. The monetary cost and
critical military mission of the ABL system makes its optimal utilization a strategic

military priority.
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Chapter 4
The 1|r;| > t; Scheduling Problem

Chapter 3 introduced a modified B&B algorithm, called the BB&R algorithm, that
uses the Distributed Best First Search (DBFS) exploration strategy, which is a hybrid
between Best-First Search (BFS) and Depth-First Search (DFS) [91]. The DBFS ex-
ploration strategy was incorporated with the BB&R. algorithm to solve the 1}r;| 3 U;
scheduling problem. In particular, the algorithm was able to solve problem instances
with up to 300 jobs, outperforming the best known algorithms reported in the lit-
erature [27, 6, 76]. Memory-based dominance rules, that store (i.e., remember) sub-
problems that have already been generated (and hence, the name Branch, Bound, and
Remember) are also incorporated into the BB&R algorithm. Lastly, the BB&R al-
gorithm with DBFS offers several advantages over the more traditional DFS or BFS.
In particular, DBFS is able to find optimal solutions earlier in the search process,
and by design, it explores fewer sub-problems that will eventually be dominated by
another sub-problem, and hence, reducing the ﬁumber of branches.

The BB&R . algorithm with the DBFS exploration strategy is used in this chap-
ter to solve the 1|r;| > ¢; scheduling problem. A modified dynamic programming
algorithm is also presented to efficiently compute tighter bounds. Several previously
known dominance rules proposed by Jouglet et al. [50], Baptiste et al. [4] and Chu
[16] are also incorporated into the BB&R algorithm.

This chapter is organized as follows. Section 4.1 describes the 1|r;| 3" ¢; scheduling
problem, and the notation used in this chapter. Section 4.2 describes the dominance

rules used for the 1|r;] > t; scheduling problem, as well as a proof showing that the
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combination of using all these dominance rules preserves exactness. Section 4.3 de-
scribes the bounding schemes incorporated in the BB&R algorithm, including a more
efficient implementation of a modified dynamic programming algorithm for comput-
ing the lower bounds. Section 4.4 provides an overview of the BB&R algorithm.
Computational results are reported in Section 4.5, followed by conclusions in Section

4.6.

4.1 Background and Notations

The scheduling problem addressed in this chapter is a single machine scheduling prob-
lem, denoted as 1|r;| >_#; [51]. The problem consists of a set of jobs J = {1,2,...,n}
to be scheduled in sequence, where associated with each job is a release time r;, a
processing time p;, and a due-date d;, for ¢ = 1,2,...,n, where all parameters are
positive integers. A job cannot be started before its release date. Tardiness of a job
i € J is defined as t; = max(0, ¢; — d;), where ¢; is the completion time of job i. The
objective of the 1|r;| 3_ ¢; scheduling problem is to minimize the total tardiness > ¢;.
Rinnooy Kan [51] proves this problem to be N P-hard in the strong sense.

A well-studied variation of the 1|r;| Y ¢; scheduling problem is the 1{| Y ¢; schedul-
ing problem, where all jobs have equal release dates. The 1|| > ¢; is also known to be
N P-hard [31]. Several dominance rules for the equal release date problem have been
proposed in the literature [34, 96]. Exact algorithms such as dynamic programming
algorithms and B&B algorithms have also been proposed by Lawler [65], Potts and
Van Wassenhove [88], Szwarc et al. [96], and Chang et al. [14].

The 1|ry| > t; scheduling problem considered in this chapter has received less
research attention. Chu and Portmann [17] and Chu [16] propose sufficient conditions
for local optimality, and develop B&B algorithms in conjunction with dominance rules

for solving this problem. The best known B&B algorithm is reported by Baptiste et
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al. [4] and Jouglet et al. [50], where the algorithm was able to solve problems with

up to 50 jobs (for the hardest instances) and was tested with up to 500 jobs (for the

easiest instances).

The following notation and assumptions are used in the remainder of the chapter.

Jobs are assumed to be sorted by earliest due-date order, and ties are broken based

on the release time followed by the processing time (ie., i < j = d; < d; V (d; =

diATi <)V (di=d; A =71; Ap; <p;). Let 0 = (01,02,...,0m) be a sequence of

scheduled jobs, where o; € J for i =1,2,...m. For a set of jobs J' C J, let

Let

r(J') = minjey 7j,

p(J) =2 jer P

d(J') = maxjey d;.

¢, = ¢(o) denote the completion time of the sequence of scheduled jobs o,
cs, denote the completion time of job o; (define ¢,, = 0),

Sq; denote the start time of job o; (define s,,,,, = ¢),

F, = F (o) denote the set of unscheduled (free) jobs,

T, =T(0) = }_,e, t; denote the total tardiness of the jobs in o,

f, = max{cy, min;ey, 7;} denote the earliest start time of the free jobs,

T;x(7) = max(0, max(r;, ) + p; — d;) + max(0, max(max(r;, ) + p;, k) + Pk — dk)
denote the tardiness of job j and job £ when scheduling job j immediately before

job k given that the machine becomes available at time 7,
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o Ci(F) = max(max(r;,7) + p;,7x) + pr denote the completion time of job k
when immediately preceded by job j given that the machine becomes available

at time 7.

A state in the BB&R algorithm will be represented by (o, Fy, Ty, 75 ).

4.2 Dominance Rules

This section presents several dominance rules used in the BB&R algorithm for the
1|r;| " t; scheduling problem. As described in Section 3.1, dominance rules are prop-
erties that exploit the structure of optimal solutions, and hence, can be used as
pruning strategies. These rules identify specific properties that at least one optimal
solution must satisfy. These rules can prune many solutions, including optimal solu-
tions; however, they will not prune all optimal solutions. These dominance rules are
designed to provide a significant reduction in the search space.

In order to describe these dominance rules, define an active schedule as a schedule
such that no jobs in the schedule can be scheduled earlier without causing a delay for
another job. In addition, a set of schedules is said to be dominant if it contains at
least one optimal schedule.

The BB&R algorithm in this chapter uses several dominance rules proposed in
Chu [16] and Jouglet et al. {50]. Individually, these dominance rules have been shown
to be exact (i.e., at least one optimal solution must satisfy a specific dominance
rule). These dominance rules have been modified such that they can be combined.
This section provides a proof showing that the combination of dominance rules used
in this BB&R algorithm can be used simultaneously without pruning all optimal
solutions.

Chu and Portmann [17] describe a sufficient condition for local optimality for

the total tardiness criterion. Jouglet et al. [50] expand on this work and provide a
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necessary and sufficient condition for local optimality and define a dominant subset
of schedules based on this necessary and sufficient condition, which is now formally

stated.

Definition 4.2.1 Jouglet et al. Necessary and Sufficient Condition [50]
An active schedule S is said to be Locally Optimal Well Sorted (LOWS-active) if every

pair of adjacent jobs j and k satisfy at least one of the following conditions:
1. Tj(F) < Tx;(F) (where 7 is the completion time of the job preceding job j),
2. Ty () = Ty () and max(r;,7) < max(ry,T),
3. Tix(7) > Ty;(F) and max(r;,7) < max(rg, 7).

Theorem 4 states that given any schedule S, there exists a LOWS-active schedule

that is at least as good as S.

Theorem 4 [50] The subset of LOWS-active schedules is dominant for the one ma-

chine total tardiness problem.

A modified LOWS-active schedule criterion is used in the BB&R algorithm pre-
sented in this chapter. This modification is necessary in order to prove the exactness
of combining several other dominance rules used in the BB&R algorithm. Prior to

presenting the modified LOWS-active schedule criterion, the following total order is

defined.

Definition 4.2.2 Given two partial sequences of jobs ¢ = (01,02,..., Oy) and § =
(61,62, ...,0n), 0 precedes 0, denoted as 0 — 8, if either c,, = cy,, fork=1,2,...,m
or there exists j such that c¢,; < cp; and ¢y, = cg,, fork=j3+1,7+2,...,m.

If o — 6 and 6§ — o, then 0 — 6. However, if § - o, then o strictly precedes 6.
The modified LOWS-active schedule criterion, termed LOWS*-active is now formally

defined.
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Definition 4.2.3 An active schedule S is said to be LOWS*-active if every pair of

adjacent jobs 7 and k satisfy at least one of the following conditions:
1. Tj(7) < Ty;(F) (where 7 is the completion time of the job preceding job j),

2. Tj(7) = Tij(7) and [(Cir(F) < Cri(7)) V{(Cii(7) = Cus (M) A((pj < i) V (pj =

Pe A J < k),

3. Tjk(f) > Tk]‘(f) and Cjk(f) < ij(f).

Note that the modification in the LOWS*-active schedule criterion compared to
the LOWS-active schedule is a minor change, however, this modification is necessary
to prove the exactness of the algorithm presented in this chapter, in combination
with the other dominance rules. The following proposition is needed to prove that

the subset of LOWS*-active schedules is dominant.

Proposition 1 Suppose 0 = (01,09, ...,0m) s a partial sequence of jobs such that
o; and o;.1 do not satisfy the LOWS*-active criterion. Let o' = (01,09,..., 0i-1,
Ois1, 04y Oita,---, Om) be the sequence of jobs obtained from o by interchanging jobs

o; and 0,41. Then either T(o') < T(o) or T(¢’) = T(0) and ¢’ — 0.

Proof: To simplify the notation, let 7 = 0;, kK = 041, and 7 = ¢,,_,. All three of
the LOWS*-active conditions must be violated. Condition (1) of Definition 4.2.3 is

violated implies that Ty, (F) > Ty; (T) .

Case 1: Ty () > Ty; (F) . Condition (3) of Definition 4.2.3 is violated implies that
Cjk (T) > Cy; (T) , which implies that interchanging jobs j and k will decrease

the total tardiness, i.e., T (¢’) < T (o).

Case 2: T;(7) = Tx;(7). Condition (2) of Definition 4.2.3 is violated implies that
Ci(T) 2 Ciy (7).
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Case 2a: Cj(7) > Cy;(7). Interchanging jobs j and k will not increase the
total tardiness, nor will it increase the completion times of jobs
Oit+2,0it3y - - -, Om, but it will decrease the completion time of the

job in position i + 1 in ¢’. Therefore, ¢/ — o.

Case 2b: Cj(F) = Ci;(7). Condition (2) of Definition 4.2.3 is violated im-
plies that p; > pi. Interchanging jobs j and & will not increase the
total tardiness, nor will it change the completion times of the jobs
in positions 7 + 1,7+ 2,...,m. The completion time of the job in

position i in ¢’ is less than or equal to ¢,,, and hence, ¢/ — . O

Proposition 1 states that interchanging any adjacent jobs in a non-LOWS*-active
schedule will either decrease the total tardiness or decrease the order of the sequence

defined by Definition 4.2.2. Theorem 5 formally states that the subset of LOWS*-

active schedules is dominant.

Theorem 5 Any sequence of jobs o can be transformed via a series of pairwise inter-

changes into a sequence of jobs o’ such that ¢’ is LOWS*-active and T (¢') < T (o).

Proof: Proposition 1 shows that interchanging a pair of adjacent jobs that violate
the LOWS*-active criteria will either strictly decrease the total tardiness or leave it
unchanged. Only a finite number of interchanges can be made that decrease the total
tardiness. There can only be a finite number of interchanges between two interchanges
that decrease the total tardiness since each such interchange results in a new sequence

that precedes the old one. [l

The next dominance rule presented is a memory-based dominance rule. Unlike
the LOWS*-active schedule criterion, a memory-based dominance rule compares two
partial sequences to determine if one dominates the other. Memory-based dominance
rules are not new; Baptiste et al. [4] and Jouglet et al. [50] used a similar memory-

based dominance rule in their algorithm, which they termed “better sequence”. The
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Memory Dominance Rule (MDR) presented can be combined with the other domi-
nance rules presented such that the full BB&R algorithm is proven to be exact. The
following definition defines the MDR used within the BB&R algorithm.

Definition 4.2.4 Memory Dominance Rule (MDR)
Let 0 = (01,02,...,0,) and 6 = (61,02, ...,0n,) be two LOWS*-active partial sched-
ules such that {01,02,...,0m} = {01,02,...,0m}. Then o dominates ¢ if at least one

of the following conditions is satisfied.
1. T, < Ts and 75 < T,
2. T, =Ts and 7y < T,

8 T,=Ts; andr, =75 and 0 — 4.

To prove that using the MDR with the LOWS*-active schedule criterion will not

prune out all optimal solutions, the following definitions are needed.

Definition 4.2.5 A sequence is a minimal element in a set of sequences if it is in

the set and if it is not strictly preceded by any other sequence in the set. Let
e () denote the set of all optimal sequences,
o O C O denote the set of all optimal sequences that are LOWS*-active,

o 02 C Q! denote the minimal elements of optimal LOWS *-active sequences.

Theorem 6 If§ = (6,,0,,...,6,) € Q% and 6™ = (01,0s,...,0,) is dominated by
another sequence o = (01,02,...,0,) by the MDR, then o is a subsequence of a

sequence in 2.

Proof: Let ¢’ = (01,02,...,0m, Omt1,0mt2, - - .,0,). 0 dominates ™ implies that

7o < 7gm. Therefore, the completion times of 6,411,042, . ..,0, in ¢’ are less than or
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equal to their respective completion times in §. Furthermore, T, < Tpm implies that
T, < Ty, and hence, o’ is an optimal sequence. Since 6 is optimal, then T'(c) = T'(6™).

Now suppose that ¢,, < ¢p,,. If any job in (641, .., 60,) can be shifted to start
earlier in ¢’ than in 6, then ¢’ strictly precedes 8, and by Proposition 1, ¢’ can be
transformed into a LOWS*-active sequence that strictly precedes #. However, this
is a contradiction, since § € Q2. Therefore, no job in (6,11, 0m42,---,0,) can be
shifted to start earlier. In particular, 6,,+1 can not be shifted to start earlier, and
hence , S¢,,,, = T6,,,,, Which implies that 6,41 cannot be interchanged with o, in ¢’.
Therefore, o’ is a LOWS*-active, optimal schedule that strictly precedes 6, which is
also a contradiction. Therefore, ¢, = cq,,.

It has been established that T'(¢) = T (™) and ¢,,, = cy,,, which implies that
Ty = Tgm. Thus o dominates ™ implies that ¢ — ™. Therefore, ¢’ — 6. ¢’ can be

transformed into an LOWS*-active sequence ¢” that precedes ¢’ and is optimal. ¢”

cannot strictly precede 8 because § € (2. Hence ¢” < ¢’ < 6. ]

Two other supplementary dominance rules are used in the BB&R algorithm,
namely the First Job Rule (FJR) [16] and the Equal Length Job Rule (ELJR) [4].

These rules are now formally presented.

Theorem 7 First Job Rule (FJR)[16]
If there is a job i such thati € J, and for all jobs j € J, p; < p;,d; < d;, then there

is an optimal schedule in which job i precedes any job k such that r; < ry.

In case more than one job satisfies the FJR conditions, then the one with the
smallest index will be chosen.

The FJR suggests that certain jobs must be scheduled prior to scheduling any
other jobs. To show that the FJR can be used with the LOWS*-active schedule
criterion, the following theorem formally states that all LOWS*-active schedules also

satisfy FJR.
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Theorem 8 All LOWS*-active schedules satisfy the FJR.

Proof: Suppose o is a LOWS*-active schedule that does not satisfy the FJR. Let
k be the job with the smallest index such that p; < min,e;p; and d; < mineyd;.
Let ¢ be the job such that r; < r; and job ¢ precedes job &k in . Let 7 be the job
immediately preceding job k in ¢ and 7 be the completion time of the job immediately
preceding job j. Job ¢ precedes job k and r; < r; implies that r, < s;, and hence,
jobs 7 and k can be interchanged without increasing the completion time of any jobs
(ie., Cix(F) > Cyj(7)). pe < p;j and di < d; imply that Tj(7) > Ty;(7). Therefore,
jobs j and k do not satisfy conditions (1) or (3) of the LOWS*-active criterion, and
hence, jobs j and k must satisfy condition (2). However, the only way that condition
(2) can be satisfied when Cji(7) > Cy;(7) is to have p; < py or p; = pr and j < k.
Neither of these are possible since py < pj, di < dj, and k has the smallest index of

any job that satisfies the FJR conditions. W

Although the FJR is stated in terms of the original problem, it can also be applied
to sub-problems in the BB&R algorithm. Given a partial sequence o = (o1, .. ., om),
if there exists a job k such that p; < p; and dy < d; for all jobs j € F, and r < 7,
then job k can be scheduled before all the other jobs in Fj.

Another dominance rule used in the BB&R algorithm is the ELJR, which was

originally proposed by Baptiste et al. [4].

Theorem 9 Equal Length Job Rule (ELJR)[4]
Let i and k be two jobs such that p; = px. If r; < r and d; < max(ry + pk, di), then

there exists an optimal schedule in which job i precedes job k.

Theorem 10 formally states that the ELJR can also be combined with the LOWS*-

active schedule criterion, the MDR, and the FJR.

Theorem 10 There exists an optimal schedule in Q% that satisfies the ELJR.
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Proof: Let o be an optimal sequence that is not strictly preceded by any other
optimal sequence (i.e., o is a minimal element). Let ¢’ be obtained by interchanging
jobs until the ELJR is satisfied. Then ¢’ is optimal and is not strictly preceded by
any other optimal sequence. To complete the proof, it must be shown that ¢’ is a
LOWS*-active schedule or can be transformed to be LOWS*-active.

Suppose ¢’ is not a LOWS*-active schedule. Suppose jobs j and k are adjacent
jobs in ¢’ that do not satisfy the LOWS*-active conditions. Let ¢” be obtained from
o’ by interchanging jobs j and k. Let 7 be the completion time of the job immediately

preceding job j.

Case 1: Tjx(7) > Ty;(7). The proof of Proposition 1 shows that the total tardiness of

o” is less than ¢’, which contradicts that ¢’ is optimal.
Case 2: Ty (7) = Ti; (7).

Case 2a: : Cj(T) > C;(7). This is a contradiction since this implies that

o' strictly precedes ¢’
Case 2b: Cj(7) = Cy;(7).

Case 2bi: p; > pi. This is a contradiction since this implies that

0" strictly precedes o’.

Case 2bii: p; = pg. Since jobs j and k do not satisfy the LOWS*-
active schedule criterion, then 5 > k. This implies
that d; > dj due to the order in which the jobs are
sorted. If r; > 7y, then jobs j and k do not satisfy
the ELJR, which is a contradiction. If r; < rg, then
d; > dj. (due to the order in which the jobs are sorted
and j > k), so j and k can be interchanged without

violating the ELJR. After all such interchanges have
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been performed, ¢’ will be a LOWS*-active, optimal

schedule that satisfies the ELJR. O

All the dominance rules presented in this section are combined and used in the
BB&R algorithm presented in this chapter. Theorems 5-10 establish that these dom-
inance rules can be combined such that there must be at least one optimal solution
that remains unpruned by these rules. Note that there are other dominance rules
presented in the literature that are not used in this BB&R algorithm. For example
the generalized Emmons rules [4] and Theorem 3 of Chu [16] were not incorporated
into the BB&R algorithm. Some of the dominance rules in Jouglet et al. [50] based
on insertion and interchanging of jobs were also not included because they do not
fit well into the exploration strategy described in Section 4.4. Moreover, additional
dominance rules increase the difficulty in finding a proof of exactness for combining
additional rules, and it is not clear whether such a proof or a counterexample exists.
It may be possible to combine additional dominance rules to the BB&R algorithm.
However, the proofs presented in this chapter will not guarantee that the BB&R
algorithm will remain exact with these other dominance rules. Prior to outlining
the BB&R algorithm, the next section presents the different upper and lower bound
algorithms used in the BB&R algorithm.

4.3 Bounding Scheme

This section provides an overview of the algorithms for computing the upper and lower
bounds used in the BB&R algorithm for the 1|r;| > ¢; scheduling problem. Two upper
bound algorithms proposed by Chu [16], namely the IPRTT and the NDPRTT are
used to compute the initial upper bound. Two lower bound algorithms, including a
modified dynamic programming algorithm originally proposed by Lawler [65] and a

lower bound algorithm proposed by Baptiste et al. [4] are used to compute the lower
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bound. A brief overview of each of the bounding algorithms is provided.
The two upper bound algorithms, IPRTT and NDPRTT, are Greedy algorithms.
Both of these algorithms are based on a function called Priority Rule for Total Tar-

diness (PRTT) [16], defined as
PRTT(4, A) = max(r;, A) + max(max(r;, A) + pi, d;),

where 7 € J and A is the time at which the machine becomes available. Theorem 11,
presented in Chu [16] uses the PRT'T function to define a locally sufficient condition

for optimality.

Theorem 11 [16]
Given only two jobs i and j to be scheduled on a machine that becomes available at
time A, the sufficient condition for processing job i before job j in order to obtain an

optimal solution is PRTT(i,A) < PRTT(j,A).

At each iteration, the IPRTT attempts to schedule a job k with the current
minimum PRTT function value. It then attempts to insert any unscheduled jobs that
can be completed before job k. If no such jobs can be inserted before job k, the
process is repeated until all jobs are scheduled.

The NDPRTT schedules jobs based on the earliest release time, ties are broken
based on the smallest PRTT function value, and further ties are broken based on
smaller processing times. Baptiste et al. [4] propose a lower bound based on the
Generalized Emmons Rule. The following two propositions are used in their lower

bound algorithm.

Proposition 2 [4]
Let j and k be two jobs such that r; < ri,p; < pi, and d;j < di. Then there exists an

optimal schedule in which job k begins after the end of job j.

50



Proposition 3 [4]
Let j and k be two jobs such that r; < ri,p; < pi, and d; > di. Then exchanging d;

and dy, does not increase the optimal total tardiness.

The Baptiste et al. [4] algorithm allows preemption, and modifies the due-date
of each job based on the current schedule. The modified due-dates are lower bounds
such that the computed total tardiness will not overestimate the true optimal total
tardiness. For the remainder of the chapter, this algorithm will be referred to as the
BLB.

Another lower bound for the 1|r;| > t; scheduling problem can be obtained by
relaxing the release times to all be zero. The resulting 1|| _¢; scheduling problem
can be solved in O(n* 3"}, p;) time using Lawler’s dynamic program, but the running
time may be too slow for the lower bound to be useful. Instead, a branch and
remember (B&R) algorithm was used to solve the relaxed problem. The method of
branching is based on the decomposition method that Lawler used in his dynamic
program and the improvements developed by Chang et al. [14]. Furthermore, the
states of this B&R algorithm are saved from the first time the lower bound algorithm
is called until the last time the lower bound algorithm is called. Therefore, as the
overall BB&R. algorithm proceeds, the lower bound algorithm builds a database of
states. Many of the sub-problems for which lower bounds must be calculated are
very similar to each other, and hence, they share many states. The optimal solution
for the shared states do not have to be recomputed because they are stored in the
database. This approach greatly reduces the total computational effort required to
compute the lower bounds. Other more sophisticated exact algorithms for solving the
1|| >_t; scheduling problem have also been proposed in the literature. Szwarc et al.
(96, 97] present different B&B algorithms for solving the 1|| > ¢; problem. In addition
to the decomposition methods used by Lawler [65] and Chang et al. [14], Szwarc et

al. [96] use additional decomposition rules that further eliminate possible positions
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for scheduling jobs. It may be possible to incorporate the rules used in these exact
algorithms for solving the 1| > ¢; problem with the BB&R algorithm, to obtain a
even better overall performance.

The modified dynamic programming algorithm can also be used to estimate tighter
lower bounds based on decomposing unscheduled jobs into smaller groups. The set

of unscheduled jobs are broken into groups based on the following steps:

Step 1: Sort all unscheduled jobs in earliest due-date order, (41, ..., jm)-

Step 2: Let 0 =ry,.

Step 3: Let the current earliest unscheduled job be j;; add j; to the current group.
Step 4: Remove j; from the set of unscheduled jobs.

Step 5: § = 6 + p;.

Step 6: If r;4, > 4, then start a new group, and let § = ryy;.

Step 7: Repeat from Step 3 until there are no more unscheduled jobs.

The modified dynamic programming algorithm is then used to compute the lower
bound for each of the groups. The sum of all the total tardiness for each group is
the new lower bound. For the remainder of the chapter, this new method for using

Lawler’s dynamic programming algorithm will be referred to as Decomp-DP.

4.4 Branch, Bound, and Remember Algorithm

This section introduces the BB&R algorithm for the 1|r;| >_¢; scheduling problem.
The BB&R algorithm is an enumeration, divide and conquer technique. Like other

Bé&B algorithm, the goal is to explore sub-problems until some of these sub-problems
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may be fathomed, and hence, reduces the search space. The BB&R algorithm dif-
fers from other B&B algorithm in two fundamental ways. First, it incorporates the
DBFS exploration strategy that determines which sub-problem to explore. Second,
by design, the BB&R algorithm stores previously generated sub-problems such that
memory-based dominance rules can be applied efficiently.

The BB&R algorithm is a constructive B&B algorithm. It enumerates the so-
lution space by building a search tree, constructing feasible schedules by iteratively
appending unscheduled jobs to partial schedules. Each internal node in the search
tree is a sub-problem, while a leaf in the search tree corresponds to a feasible solution.
The nodes in the search tree can be identified as states, (o, F,,T,,7,). A new state
is created by adding a new job to the partial sequence o. The dominance rules are
applied at each node, pruning possible branches along the search tree. Each visited
node in the search tree is stored in a hash table, a data structure that provides an
efficient look-up capability. By storing each node, the states are remembered, and
hence, the MDR can be applied. Two lower bounds are computed at each node, and
the maximum of the two is recorded.

The order in which the search tree is constructed can greatly affect the perfor-
mance of any B&B algorithm. The BB&R algorithm uses the DBFS exploration
strategy described in Section 3.3.2 for constructing the search tree. See Section 3.3.2
for a description of the DBFS exploration strategy and psuedo-code. For evaluation
purposes, a DFS exploration strategy was also used in place of the DBF'S exploration
strategy. See Section 4.5 for a comparison of the computational performances between
DBFS and DFS.

In the BB&R algorithm, a node in the search tree may be pruned in one of two
ways. It can be pruned either by the computed bounds or by the dominance rules.
The bounding scheme works as follow. Initially, prior to any branching, an upper

bound is computed based on the IPRTT and NDPRTT algorithms; the minimum of
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BB&R(o, F,,T,,7,, hash_table, heap(l,..., size(F,))
LB = max(BLB(Fy,7,), Decomp-LB(F;, #,))
UB = min(IPPRT, NDPPRT)
Initialize heap(0)
while heap is not empty do
for i=0—-n do
cur_state = heap(i).pop
cur_lb = max(BLB(cur_state), Decomp-LB(cur_state))
if (curdb + cur_state.T,) < UB then
PF, = ITR(cur_state.F,) and FJR(cur_state.F,) and LOWS*(cur._state. F;,)
and ELJR(cur_state.F;)
for each j € PF, do
new_state.c = cur_state.c + j
update new_state from cur_state
Violated_ MDR= MDR(new_state)
if not Violated_MBDR then
Store(new_state) in hash_table
heap(i+1).add(new_state)
end if
end for
end if
end for
end while

Figure 4.1: BB&R Pseudo-Code for the 1|r;| > t; Scheduling Problem

these two bounds is retained. As the branching process proceeds with additional jobs
being scheduled, lower bounds are computed using the BLB and the Decomp-DP. If
the lower and upper bounds are tight, then the branch is pruned.

As mentioned above, the dominance rules are also used for pruning branches along
the search tree. In addition, the dominance rule can also be used to filter jobs in F,
that do not need to be considered as a next schedulable job. All of the dominance
rules are applied upon visiting each node of the search tree. The dominance rules are
applied in the following order: The FJR is first used to examine the set F,, it identifies
a job that must be immediately scheduled next. If such a job exists, a single sub-

problem is created by appending the job to . Otherwise, the Idle Time Rule (ITR)
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is then used to reduce the number of jobs that can be considered as a candidate for
being scheduled next. Let this set of jobs be denoted by PF, (possible first). The ITR
removes jobs from F;, that have release times greater than minjeg, max(#,,r;) + p;.
The LOWS*-active criterion is then applied to each of the jobs in PF, to further
filter PF,. Lastly, the ELJR is then applied to the remaining jobs in PF,. If at any
point PF, becomes empty, the entire branch is pruned. Sub-problems are created by
appending the jobs that satisfy the FJR, the ITR, the ELJR, and the LOWS*-active
criterion to o, one job at a time. Let a new state be denoted as (¢0', Fyr, Tyr, 75r). The
MDR is then applied to each new state. If a new state satisfies the MDR, then the
new state is stored and later explored. Figure 4.1 depicts the pseudo-code for the
BB&R algorithm with the DBFS implementation. Note that in addition to a hash
table, a heap structure is also needed for the DBFS implementation to store states

for each level of the search tree.

4.5 Computational Results

This section reports the computational results for the BB&R algorithm described
in Section 4.4. All the dominance rules and the different bounding algorithms pre-
sented in this chapter have been incorporated into the BB&R algorithm. The BB&R
algorithm is evaluated for 2280 randomly generated test instances, using the same
scheme reported in Chu [16] and Baptiste et al. [4]. The generation scheme is based
on four parameters: number of jobs, processing time range, a, and (3, denoted as (n,
[Pmin, Pmax), @, 8). Each instance consists of three vectors, p, r, and d, which are
randomly generated from three discrete uniform distributions. The processing times
are randomly sampled from the set {1,2...,10}, the release times are randomly
sampled from the set {0,1,...,|a> p;]} and d; — (r; + p;) is randomly sampled

from the set {0,1,...,{8>.pi]}. The parameters used for generating the test in-
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Table 4.1: BLB and the Decomp-DP Lower Bounds Comparison for the 1|r;|>"¢;
Scheuduling Problem in CPU Time (sec.)
a=050=005 «a=058=02  «a=058=05
n  BLB Decomp-DP BLB Decomp-DP BLB Decomp-DP

10 0.08 0.1 0.08 0.09 0.09 0.08
20 0.08 0.08 0.09 0.08 0.12 0.08
30 0.09 0.09 0.25 0.09 1.9 0.09
40 0.12 0.1 4.5 0.1 81.5 0.1
50 0.2 0.1 33.4 0.1 - 0.2

stances are n = 10, 20, .. ., 100, 120, . . ., 200, 250, 300, 400, 500, [Pmin, Pmax] = {[0,10]},
a =0,0.5,1.0,1.5, and g = 0.05,0.25,0.5. For each combination of parameter set-
tings, 10 random instances aré generated for a total of 2280 instances. Each instance
in the test set is restricted to a one hour total processing time limit and a 8 million
state space memory limit. All the experiments in the chapter were executed on a 2
GHz Pentium D using 1 GB of RAM.

Prior to examining the full power of the BB&R algorithm, the two different lower
bound algorithms, namely the BLB and the Decomp-DP are tested individually using
the DBFS exploration strategy in conjunction with all the dominance rules described
in Section 4.2. Table 4.1 reports the average running time in CPU seconds for in-
stance size n = 10,20,...,50, with the hardest parameter setting, a = 0.5 and
B = 0.05,0.25,0.5. Note that in Table 4.1, all the test instances are solved to opti-
mality except for the set of instances with n = 50, « = 0.5, and 8 = 0.5, where BLB
was only able to solve 20 percent of the test instances. The computational results for
the larger instances are reported in Table 4.2. Table 4.2 reports the average running
times and the percent of instances solved. The average running time is reported only
for the set of instances where the complete set is solved to optimality.

The computational results reported in Table 4.1 and 4.2 show that the BB&R
algorithm with the Decomp-DP lower bound algorithm provides significantly better
results than the BB&R algorithm with the BLB lower bound algorithm. Table 4.1
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Table 4.2: BLB and Decomp-DP Lower Bounds Comparison for the 1|r;] > ¢; Schedul-
ing Problem in CPU Time (sec.) and Percentage Solved (Larger Instances)
a=05/0=005 «a=0570=025 a=05703=05
n  BLB Decomp-DP BLB Decomp-DP BLB Decomp-DP

60 05 0.2 80% 0.2 0% 0.2
017 0.2 30% 0.2 0% 0.3
80 5.1 0.3 0% 0.9 0% 0.3
90 126 0.4 0% 1.0 0% 0.5
100 48 0.5 0% 1.6 0% 90%
150  30% 2.0 0% 3.7 0% 90%
200 0% 8.1 0% 13.7 0% 13.8
250 0% 19 0% 90% 0% 90%
300 0% 244 0% 245 0% 80%
400 0% 90% 0% 40% 0% 20%

shows that the running time when using the Decomp-DP lower bound algorithm
scales more efficiently as the size of the problem instances increases. Moreover, Table
4.2 shows that when using the Decomp-DP lower bound algorithm with the BB&R
algorithm, larger size instances can be solved to optimality. For o = 0.5 and § = 0.5,
the BB&R algorithm with the BLB lower bound algorithm is not able to solve any
test instances with n > 60, while using the Decomp-DP lower bound algorithm, the
BB&R algorithm is able to solve 80% of all instances with n = 300.

For further evaluation purposes, the BB&R algorithm is implemented using both
the DBFS exploration strategy and the DFS exploration strategy. Let the BB&R
algorithm using the DBF'S exploration strategy be denoted as BB&R-DBFS, and let
the BB&R algorithm using the DFS exploration strategy be denoted as BB&R-DFS.
Tables 4.3 and 4.4 report the average and the maximum running time for the BB&R-
DBFS and BB&R-DF'S respectively. Note that the number represented in parenthesis
denotes the number of test instances solved.

Tables 4.3 and 4.4 report the results for only the larger instances. For the smaller
instances, with n < 100, the BB&R-DBF'S algorithm was able to solve all instances

to optimality with an average running time of 0.2 seconds and maximum running
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time of 13 seconds. Instances are considered unsolved if a solution cannot be found
within the one hour time limit or due to allocating more memory than available. In
Table 4.3, all unsolved instances with n < 400 were due to the time restriction, while
all unsolved instances with n = 500 were due to memory limitation. Note that in
Table 4.3, though it may appear that as n increases, the problems are getting easier
(since the average CPU times are shrinking; see in particular n = 400, 500), the test
instances are in fact getting harder to solve (since fewer instances are being solved
to optimality). To illustrate this point, for @ = 0.5 and 8 = 0.05, the average CPU
time reported for n = 500 is 772 sec., which is less than 2034 sec., the average CPU
time reported for n = 400. However, for n = 500, only one test instances is solved to
optimality, while for n = 400, seven test instances are solved to optimality.

The computational results reported in Table 4.4 show that the DFS exploration
strategy is substantially inferior to the DBFS exploration strategy. For a # 0, the
average running time for using the DBFS exploration strategy is faster or at least
as good as the average running time for using the DFS exploration strategy. Note
that for @ = 0, Lawler’s dynamic programming algorithm [65] solves all instances
to optimality, and hence, the exploration strategies do not affect the performance
of the BB&R algorithm. In addition, Table 4.4 shows that there are many more
instances that were left unsolved by the BB&R-DFS algorithm. Unlike the BB&R-
DBF'S algorithm, the BB&R-DF'S algorithm encounters memory limitations starting
at instances with n = 140. The BB&R-DFS algorithm consumes more memory and
has a slower computational running time compared to the BB&R-DBFS algorithm.

In addition to evaluating the computational performances of the BB&R-DBFS
algorithm, Table 4.5 provides the necessary data for the physical memory usage of
the algorithm. Table 4.5 reports the maximum number of states stored for the set
of test instances with @ = 0.5 and 8 = 0.5. This parameter setting is chosen for

this evaluation because these test instances consume more memory than any other
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instances prior to any memory limitations. Also, the test instances with a = 0.5
and 8 = 0.5 seem to be the hardest test instances. Note that from Table 4.5, the
largest instances that were solved without running into memory limitation are the
n = 250 size test instances. However, the maximum number of stored states is from
the n = 100 test instances. The maximum number of stored states for n = 100
and n = 250 is 277,977 and 187,231 states, respectively. For each state stored, the
BB&R algorithm requires 11 integer types and a variable size bit vector. The largest
bit vector used in our experiments is 63 bytes long. The total memory consumption
for each stored state is 107 bytes, where 44 bytes are from the integer type and 63
bytes are from the bit vector. Therefore, for n = 100 and n = 250, the BB&R-
DBFS algorithm uses approximately 30 MB and 20 MB of memory, respectively.
Note that this is a slight overestimate since the bit vector is not always 63 bytes
long. Furthermore, all computational experiments are limited to a maximum of 8
million states. Assuming that each states consumes 100 bytes, then the BB&R-
DBFS algorithm approximately consumes at most 800 MB of memory. Therefore,
from Tables 4.1, 4.2, and 4.5, the performance superiority of the BB&R algorithm
compared to previous algorithms is not due to the additional memory, but rather,
a result of the dominance rules, the DBFS exploration strategy, and the improved
Decomp-DP lower bound algorithm.

To further provide a more complete evaluation of the BB&R-DBFS algorithm, it
is also compared with the algorithm presented in Jouglet et al. [50], denoted as the
JBC algorithm. Both the BB&R-DBFS and the JBC algorithm are executed on the
same computing platform over the same test instances used in the Jouglet et al. [50].
Tables 4.6 and 4.7 report the average running time for the BB&R-DBFS and the
JBC algorithm respectively. Note that the values that are in parenthesis denote the
number of instances solved. The last column labeled ”Largest n” reports the largest

size instances where at least 80% of the test instances for that parameter setting are
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Table 4.5: 1|r;| >_t; BB&R-DBFS Algorithm: Maximum and Average Number of

Stored States (a = 0.5,3 = 0.5)
n Max. Avg.
10 9 2.5
20 22 4.8
30 113 38.9
40 335 76.9
50 3726  479.8
60 2008  656.3
70 4031 569.3
80 1731 549
90 4441 1154.9
100 277977 28411
150 190869 26148
200 37658 14287.7
250 187231 89696

solved to optimality.

The performance of the BB&R-DBFS algorithm compares favorably to the JBC
algorithm, both in terms of speed and the size of the largest problems that can be
solved. Table 4.6 and 4.7 demonstrate that the average running times for the BB&R-
DBFS algorithm are between two to four orders of magnitude faster for the harder
parameter settings. For example, for n = 60, = 0.5, and 8 = 0.25, the average
running time for their algorithm was 88 seconds while the average running time for
BB&R-DBFS was 0.3 seconds. For n = 60, = 0.5, and § = 0.5, the average
running time for the JBC algorithm was 1619 seconds while the average running time
for BB&R-DBF'S was 0.4 seconds. BB&R-DBF'S solved all the instances with a =0
without branching since the lower bound based on the 1}| > ¢; problem was tight. The
computational results in Table 4.6 for a = 0 clearly show that the B&R algorithm
used to solve the 1|| > ¢; problem provides a significant speedup.

In terms of the size of the largest problems that can be solved, for the hardest
parameter settings with a = 0.5 and 8 = 0.5, the JBC algorithm was unable to solve

80% of the instances with n = 70, whereas BB&R-DBFS was able to solve 80% of
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the instances with up to n = 290 jobs. For six different combinations of a and 5,
BB&R-DBFS was able to solve problems that were at least twice as large as those
solved with the JBC algorithm. However, it is important to note that for a = 1 and
B = 0.25 with n = 250, the BB&R-DBFS algorithm did not perform as well the JBC
algorithm. The JBC algorithm was able to solve all 10 instances while the BB&R-
DBFS algorithm was only able to solve 7 instances. It is also worth noting that the
BB&R-DBFS algorithm performed much better then the JBC algorithm for the same
parameter settings for n > 250. Note that n = 500 is the largest size instance in the
test set, though the computational results indicate that for BB&R-DBFS can solve

much larger instances for some of the combinations of a and 3 parameter settings.

4.6 Conclusion

This chapter presents the BB&R. algorithm using the DBFS exploration strategy to
solve the 1|r;| 3" t; scheduling problem. Several previously known dominance rules
are incorporated into the BB&R algorithm. This chapter provides a proof showing
that the combination of dominance rules used in the BB&R algorithm remains exact.
In addition, this chapter provides a memory-based enhancement to the Lawler [65]
dynamic programming algorithm, which improves the computational performance for
computing the lower bound. Furthermore, a new decomposition approach used with
the Lawler [65] dynamic programming algorithm provides tighter lower bounds. The
computational results of this chapter show that the combination of all the domi-
nance rules, DBFS exploration strategy and improved bound computation results
in a highly efficient BB&R-DBFS algorithm. The BB&R-DBFS algorithm outper-
forms the current best known algorithms for the hardest test instances, and performs
equally well for the easier test instances. The new DBFS exploration strategy pro-

vides a significant computational speedup compared to the more traditional DFS
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exploration strategy. Incorporating the new DBFS exploration strategy also allows

the BB&R-DBFS algorithm to solve larger instances.
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Chapter 5

The 1|ST,4| > t; Scheduling
Problem

Over the past fifty years, there has been a growing research interest in scheduling
problems, however, the majority of the literature, assumes that setup times are negli-
gible. In practice, assumptions with sequence independent setup time are inadequate
in modeling real-world problems [85, 99)].

This chapter considers minimizing total tardiness on a single machine scheduling
problem with sequence dependent setup times. This problem, denoted as 1|STq| D t;
[44, 1], has several variations including minimizing total setup time, minimizing make-
span, and minimizing the maximum tardiness, among others. See Allahverdi et al. [1]
for a comprehensive survey of various scheduling problems with setup times. Note that
when the objective is to minimize total setup time, the problem is equivalent to the
classic traveling salesman problem that is N P-hard. One well studied variation of the
1|ST,q| >_ ti is the 1|| >_¢; scheduling problem, where the setup time is ignored. The
1| 3_t; scheduling problem is also N P-hard [31]. Several exact algorithms, including
dynamic programming and branch and bound (B&B) algorithms, have been proposed
by Lawler [65], Potts and Van Wasenhove [88], Szwarc et al. [96], and Chang et al.
[14].

While there are numerous exact algorithms for solving the 1{[> t; scheduling
problem, there are few exact algorithms in the literature for solving the 1|STsq| D _ t;
scheduling problem. Most of the literature propose the use of meta-heuristics such
as simulated annealing [98], genetic algorithms [2, 90, 99], tabu search [69], and ant

colony algorithms [36]. Gupta and Smith [45] also propose the greedy randomized

67



adaptive search procedure (GRASP) and a local search heuristic for the problem.
Constructive heuristics and improvement heuristics have also been developed, though
the solution quality with such heuristics is poor and requires intensive computational
time [67]. Tan et al. [99] compare the performances of various meta-heuristics for
solving the 1|/ST.q4| > t; scheduling problem. Tan et al. [99] also report that B&B
algorithm seems to be the most effective for solving smaller size problems (less than
15 jobs), while simulated annealing and random-start local search have better per-
formances for larger size problems. Lin and Ying [69] also compare various meta-
heuristics for the weighted total tardiness problem, 1{STg4| Y wit,.

The most common exact algorithm for solving the 1|ST,4| > t; scheduling problem
is B&B algorithms. Ragatz [89] proposes a B&B algorithm for solving the 1[ST;q| > t;
scheduling problem. An algorithm for computing a lower bound and some dominance
properties are also presented in Ragatz [89]. Other variations of B&B algorithms
have also been proposed by Souissi and Chu {95], Luo and Chu [72, 70|, and Luo et
al. [71]. The differences among these proposed B&B algorithms include variations
of the dominance rules, bounding schemes, and the exploration strategies used. Luo
and Chu [72] report the best computation results, claiming to solve instances with up
to size 30 jobs.

The Branch, Bound, and Remember (BB&R) framwork presented in Chapters 3
and 4, with the Best First Search (BFS) exploration strategy is used in this chapter
to solve the 1|ST,q| Y t; scheduling problem. A new memory based dominance rule
is incorporated into the BB&R algorithm for pruning dominated sub-problems. In
addition, the Branch and Remember (B&R) algorithm presented in Chapter 4 for
solving the 1|} >~ ¢; is used to compute tighter lower bounds [65].

This chapter is organized as follows. Section 5.1 describes the 1|STg4| > t; schedul-
ing problem and the necessary notation used in this chapter. Section 5.2 outlines the

BB&R algorithm, including the new memory based dominance rule and the B&R
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algorithm for computing the lower bound. Section 5.3 provides a counterexample to
the B&B algorithm described in Luo and Chu [72] and Lu et al. [71]. Computational

results are reported in Section 5.4, followed by concluding comments in Section 5.5.

5.1 Notations

The 1|STy4| > ¢; single machine scheduling problem consist of a set of jobs J =
{1,2,...,n} to be scheduled in sequence, where each job has a processing time p;, a
due date d;, and a vector of setup times S; = (s, 814, - - -, Sns), Where s, ; is the setup
time for job j if it is scheduled immediately after job ¢. The setup time sy ; represents
the setup time incurred for scheduling job i as the first job in the scheduled sequence.
All jobs are available for processing at time zero. Processing a job incurs a sequence
dependent setup time and a processing time.

The following notations and assumptions are used in the remainder of the chapter.
Let ¢ = (01,09,...,04,) be a partial sequence of scheduled jobs, where o; € J for
1=1,2,...,mand m <n. Let

® Cp = Z;'=1 So;_1,; + Do, the completion time of job o; in job sequence o,

e C, =c,, , the completion time of job sequence o,

e t,, = maz(0,c,, — ds,), the tardiness of job o; in job sequence o,

o T, =357 ts, the total tardiness for job sequence o,

e T,(t), the total tardiness of job sequence o if its starting time is at time ¢ with

no initial setup time,
e F, the set of unscheduled (i.e., free) jobs.

The objective of the 1|ST,4| " t; scheduling problem is to find a sequence of

scheduled jobs with minimum total tardiness, Y ., t;.
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5.2 Branch, Bound, and Remember Algorithm

This section introduces the BB&R, algorithm for solving the 1|STy4| > ¢; scheduling
problem. Section 5.2.1 describes the memory-based dominance rule used for reducing
the solution space. Section 5.2.2 provides an overview of the bounding scheme used
to compute the lower bound, including a B&R algorithm first introduced in Kao et

al. [55]. A description of the BB&R algorithm is provided in Section 5.2.3.

5.2.1 Dominance Rule

The memory-based dominance rule, called the Memory Dominance Rule (MDR) for
the 1|STyq| > t; scheduling problem, compares two partial sequences to determine if
one dominates the other. The MDR determines which partial sequence provides the
guarantee that would lead to a solution that is better or at least as good as other
solutions generated from the other partial séquence. The MDR is memory-based
since it requires the BB&R algorithm to store all partial sequences that have been
previously explored for comparison. The following definition defines the MDR used

in the BB&R algorithm.

Definition 5.2.1 Let ¢ = (01,02,...,0m) and § = (01,02,...,6,,) be partial se-

quences of jobs. Then o dominates § if (F5s = Fy) A(cy < ¢5) Aty < t5) A(Om = ).

The MDR suggests that dominant partial sequence can result in a solution with
equal or less total tardiness than any other solution generated from the dominated

partial sequence. Theorem 12 shows that the MDR will not prune a superior solution.

Theorem 12 Let o = (ay,az,...,0;) and 8 = (By1,02,-..,05;) be two partial se-
quences of scheduled jobs. Let B* = (B1, B2, - .., Bi, Bixt, - - -, 0n) be a full sequence of

scheduled jobs with the least total tardiness that is generated by 8. If o dominates [,
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then there exist a full sequence of scheduled job a* generated by the partial sequence

of scheduled jobs o such that Ty» < T

Proof: If o dominates 3, then we can construct a sequence o* = (a3, sz, ...
@i, Biv1, -+, 0). Let the subsequence 8 = (Bit1, Bir2,---Bn)- The full sequence
of scheduled jobs o* is a feasible job schedule because F, = Fj. Since o; = f;,
then the setup time sq, 8., = Sg,8,,- Also, since C, < Cy and T,, < Tj, then
T =T+ T (Co + 50;,8,.1) < Tp+ T (Cs + 8,,8.,) = Tp-. Therefore, there exist

a job sequence that is at least as good as 3*. O

5.2.2 Bounding Scheme

This section provides an overview of the bounding scheme used in the BB&R algo-
rithm for the 1|S74| > t; scheduling problem. The quality of the upper and lower
bounds can lead to significant improvements in the performance of the overall algo-
rithm. A local search method is used to generate the initial upper bound. Two lower
bound algorithms are then used to compute the lower bound at each branch.

The bounding scheme works as follows. Prior to any branching, a local search
method is used to generate an initial solution as the upper bound. The branching
process proceeds by scheduling additional jobs to the partial sequences. At each
branch, two lower bound algorithms are used to compute a lower bound based on the
remaining free jobs. The maximum of the two computed lower bounds is kept. If the
lower and upper bounds are equal (i.e., tight), then the branch is pruned.

The initial local search method for generating the upper bound uses a 2-exchange
neighborhood. A 2-exchange neighborhood generates a new solution by randomly
swapping two jobs in the scheduled sequence. If the new solutions generated have
less total tardiness, the new solution is accepted. One thousand 2-exchange iterations

are executed to generate the initial upper bound.
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Two lower bound algorithms are used at each branch to compute the lower bound.
The first lower bound algorithm, denoted as the RLB algorithm, was originally pro-
posed by Ragatz [89]. Given a partial sequence o, the RLB algorithm combines the
tardiness of the scheduled jobs, T, with a lower bound based on the remaining un-
scheduled jobs, F,. The RLB algorithm computes a lower bound by adjusting the
processing time and the due dates of the jobs in F,,. The processing time are adjusted
to include the minimum setup time. Jobs are then scheduled on a shortest operation
time order. The corresponding due dates for each jobs are also re-ordered to an ear-
liest due date order. Tardiness is then computed based on these adjusted processing
times and due dates [89, 99].

The second lower bound algorithm used for computing the lower bound is a B&R
algorithm presented in Chapter 4. This lower bound algorithm, denoted as the KSJLB
algorithm in this chapter, is a B&R algorithm that uses the decomposition rules based
on Lawler’s dynamic program for solving the 1|| Y_ t; scheduling problem [65]. The
KSJLB also incorporates the improved decomposition methods proposed by Change
et al. [14]. To provide a further speedup to the original dynamic program proposed by
Lawler [65], the KSJLB algorithm builds a database of states as the lower bounds are
computed. Since many sub-problems for which the lower bounds must be computed
share the same states, the KSJLB algorithm avoids re-solving these sub-problems
by storing each state, which efficiently reduces the computational effort required to
compute the lower bound.

In order to apply the KSJLB algorithm, the 1]ST,| > t; problem is relaxed by
adjusting each job’s processing time to include the minimum setup time and ignoring
the setup time in the schedule. That is for each job j, the adjusted processing time
is pi = p; +min{s;;li =1,...,5 — 1,54 1,...,n}, which is then used to compute
the lower bound by the KSJLB algorithm. Note that if all setup times are equal, the

KSJLB algorithm finds the optimal solution.
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5.2.3 The Algorithm

The BB&R algorithm presented in this chapter uses a Best First Search (BFS) ex-
ploration strategy. Various B&B exploration strategies have been proposed in the
literature. Souissi and Chu [95] propose four different exploration strategies for their
B&B algorithm, which are variations of Depth First Search (DFS) and BFS. Ragatz
[89] also proposes a different exploration strategy where the search consists of switch-
ing between DFS and BFS in the branching process. Note that the BB&R algorithms
presented in Chapters 3 and 4 incorporate the Distributed Best First Search (DBF'S)
exploration strategy (see Section 3.3.2). Chapters 3 and 4 show that the BB&R al-
gorithm with the DBFS exploration strategy outperforms the best known algorithms
in the literature for both the 1|r;| Y Ui and the 1|r;] 3 ¢; scheduling problems.

The BB&R algorithm is a constructive B&B algorithm. Solutions are generated
by sequentially appending unscheduled jobs until a complete schedule is found. Each
node in the B&B search tree is denoted by a three-tuple (o, Fy;,T,), where o is a
partial sequence of scheduled jobs, F; is the set of unscheduled jobs, and T, is the total
tardiness for the partial sequence o. Branching in the BB&R algorithm consists of
exploring a node by appending an unscheduled job to . Lower bounds are computed
at each node based on T, and F,. The maximum lower bound obtained by the RLB
and the KSJLB algorithm is kept as the lower bound at that node. Each visited node
is then stored in a hash table, and hence, remembered. By storing each node, the
MDR can then be applied for pruning dominated branches. Additional branches are
also pruned if the lower and upper bounds are tight.

The BB&R algorithm is now formally outlined by the following steps:

Step 1: Generate the upper bound, ub, by the 2-exchanged neighborhood local search.

Step 2: Compute the lower bound, [b, by taking the maximum of the two lower

bounds computed by the RLB and the KSJLB algorithms.
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Step 3:

Step 4:
Step 5:

Step 6:

Step T:
Step 8:
Step 9:

Step 10:

Step 11:

Step 12:
Step 13:

Step 14:

Step 15:

If Ib = ub, then the optimal solution is found and the algorithm stops. Oth-

erwise go to the next step.
Generate a root node, 0 = (), F, = J, and T, = 0.
Insert the root node into a heap.

If the heap is not empty then go to the next step. Otherwise, the optimal
solution is found and the algorithm stops.

Obtain a current node, (¢’, F,,T.) by removing the top node from the heap.
If F! is empty, then update the upper bound ub.

For each free job j € F!, create a new job sequence ¢” by appending j to o’.
Job j o

For each new job sequence ¢”, compute a lower bound /b’ using the RLB and

the KSJLB algorithms.

If I’ > ub then prune the current node by going to Step 6. Otherwise, go to

the next step.
For each new job sequence, generate a new node (¢, F,,TY).

Search the hash table and apply MDR to the new node for pruning.

If the new node does not violate MDR, then add the new node to the hash

table and the heap.

Go to Step 6.

The heap structure described in Step 5 is sorted by the current lower bound of

the sub-problems. Nodes with partial sequences that have the best lower bound are

removed from the heap and explored earlier in the search process then nodes with

partial sequences that have a worst lower bound. Each node is only stored in the
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hash table if it is not pruned by either the bounds or the MDR. Note that the hash
table is indexed by bit vectors, which denote the set of unscheduled free jobs. Using
a bit vector to represent the set of free jobs allow a fast look-up time for the MDR

to compare previously explored nodes with the current node.

5.3 Counterexample

This section presents a counter example to a dominance rule used in the B&B al-
gorithm presented in Luo and Chu [72] and Luo et al. [71]. For clarification, the
notations and the theorem presented in Luo and Chu {72] are provided. The follow-

ing additional notations will be used in this section:

e J(K), the set of jobs in the partial job schedule K.

U(K), the set of unscheduled jobs.

e C(K), the completion time of the last job in K.

K|u, the new partial job schedule obtained by appending job u to the partial
job schedule K.

> (K|u), the job schedule composed of K|u, completed by the partial optimal
job schedule, which belong to J — J(K|u), starting from C(K |u).

| - 157, the number of jobs from position 4 to position j, including the two jobs

at position ¢ and j.

e S be a sequence of jobs, and S’, a sequence of jobs after some jobs are inter-
changed in sequence S. Then [i] refers to the job index of the ith position in

S.
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The dominance rule presented in Luo and Chu [72] and Luo et al. [71] is formally

stated in the following theorem.

Theorem 13 [71, 72]

If there egists i, where [i] € J(K), A1 = su_yyp) P+ Sirjfi+ 1 — Si-1)6 — Pl — Stlii+1] <
0, [Ilaw = n1, I lluena = 12, Ao = Spi—1jia) + Swjti+1) + Sk -1 + Slifu = Sli-1]3) — Slilfi+1) —
Se—1k) = Siklu < 0, Ar = (n1 — 1)A1 + Spi—je) + Sik—11fi) — S[i—111) — Se—1)w) + 7282 <0,
then Y (K|u) is dominated.

The counterexample for Theorem 13 is a 7 jobs instance with processing time
{290, 95, 100, 102,197,106, 103} and due dates {783, 683, 824,708,808, 700, 784}. De-
fine sequence o =(1,2,3,4,5,6,7). Then a new sequence 3 = (1,2,6,4,5,3,7) can
be constructed by interchanging job 3 and 6. Let the relevant setup times for these
sequences be 51 =0, 812 =7, 8,3 ="7,534=17, 845 =8, 856 =9, 567 =9, 526 =8,
Sea =17, 853 =7, s37 = 9. By Theorem 13, &A; = =5, Ay = —1, and A = —17,
and hence, 3 is a dominant sequence. However, the total tardiness is T, = 371 and
T3 = 488, hence, Theorem 13 pruned a superior sequence.

Luo and Chu [72] proves Theorem 13 by dividing the scheduled sequence of jobs
into three parts, namely part 0, part 1, and part 2, where part 0 corresponds to the
portion of the sequence prior to the index where where jobs [i] and [k] are inter-
changed, part 1 corresponds to the portion of the sequence of jobs between the two
jobs [i] and [k], including the jobs [¢] and [k], and part 3 corresponds to the remaining
part of the sequence after the interchange of the two jobs [¢] and [k]. The breakdown
in the proof presented by Luo and Chu [72] is on how the total tardiness is computed
in part 1 of the sequence. Their formula using A; for computing the differences in
tardiness in part 1 of the sequence is incorrect, since it does not take into account
that negative tardiness does not exist. The tardiness of a job is either 0 or a positive

value equal to the completion time minus the due date. The negative tardiness that
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is factored into their dominance rule over compensates for the difference in tardiness,
A, after the new sequence is constructed.

This counterexample shows that the B&B algorithm presented in Luo and Chu
[72] and Luo et al. [71] may over prune, and hence, may not have solved all their test
instances to optimality. In addition to losing the exactness of their algorithm, over
pruning can reduce the computation effort of the overall computational performances

of their B&B algorithm.

5.4 Computational Results

This section reports computational results for the BB&R, algorithm described in Sec-
tion 5.2. The computational results for the BFS exploration strategy is compared
with the computational results of the DBFS and DFS exploration strategies. In addi-
tion, this section also compares the effectiveness of the two lower bound algorithms,
the RLB and the KSJLB, described in Section 5.2.2. The overall performance of the
BB&R algorithm is also compared to the computational results reported in Luo and
Chu [72].

The BB&R algorithm is evaluated over 2,880 randomly generated test instances.
These test instances were generated using the same generation scheme described in
Ragatz [89], Luo and Chu [72], Luo et al. [71], and Luo et al. [70]. Five different

parameters are used to generate the test instances:

N, the number of jobs,

e V P, the variance of the job processing time,

RS, the range of the setup time,

TF, the average tardiness factor,
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e RD, the relative range of the due dates.

The variance of the job processing time, V P, is used to generate the processing
times for each jobs. Let the mean of the processing times be denoted as M P. MP is
then used along with the TF and RD, to generate the due dates. The mean of the due
date distribution is set equal to g = (1 — TF)(N)(MP), and the due dates are then
generated uniformly over (u—((RD)(N)(MP))/2, u+((RD)(N)(MP))/2). The setup
times are also generated uniformly over (9.5 —(RS/2),9.5+ (RS/2)). The parameters
used to generating the test instances are N = {10, 12, 14, 16, 18,20, 22, 26,30}, VP =
{25,625}, RS = {5,19}, TF = {0.2,0.4,0.6,0.8}, and RD = {0.2,0.9}. For each
combination of parameters settings, ten random instances are generated, for a total
of 2,880 instances. All the experiments were executed on a 2.4 Ghz Pentium PC with
2GB of RAM, with each instance in the test set restricted to total processing time of
30 CPU minutes, and total memory usage of 2GB.

Three different exploration strategies for the BB&R algorithm are compared. Ta-
ble 5.1 reports the average and maximum running time (in CPU seconds) for the
DF'S, BFS and DBFS exploration strategies. The DFS exploration strategy had the
worst computational performance compared to the other two exploration strategies.
Also, as shown by the maximum running time, the computational performance of the
DFS exploration strategy degraded significantly as the size of the instances increased.
On average, the DBFS and BFS exploration strategies was two to three times faster
than the DFS exploration strategy. The DBFS exploration strategy results were
comparable to the BFS exploration strategy. On average the overall computational
performance of the BF'S exploration strategy was doing slightly better than the DBFS
exploration strategy. It appears that as the size of the problem instances increases,
the BF'S exploration strategy becomes more efficient relative to the other exploration
strategies compared. Note that the average running times reported in Table 5.1 do

not include those problem instances that are unsolved due to the time limitation or
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memory limitation.

Table 5.2 reports the fraction of problem instances solved with respect to the com-
putational time limits for the DFS, DBFS and BFS exploration strategies. The data
reported in Table 5.2 also includes the instances that were unsolved due to memory
limitations. While all instances of size N = 20 are solved to optimality within a 15
CPU minute time limit, the DF'S exploration strategy could not solve 14 of the 320
problem instances because of memory limitations and 3 of the 320 problem instances
because of time limitations. For the N = 22 instances, the DFS exploration strategy
failed to solve 39 problem instances due to memory limitations and 12 problem in-
stances due to time limitations out of the 320 problem instances. The results show
that the BB&R algorithm is more susceptible to the memory limitation constraint
than the time limitations constraint. The DBFS exploration strategy failed to solve
22 of the 320 problem instances due to memory limitations for problem instances
with N = 22, and the BFS exploration strategy failed to solve 21 of the 320 problem
instances due to memory limitations for problem instances with N = 22. All prob-
lem instances of N = 22 that were not solved to optimality by the DBFS and BFS
exploration strategy were cause by memory limitations. The affects of the memory
limitation is primarily caused by the database of states needed for both the lower
bound computation and for the MDR. These experiments display the classic tradeoff
between additional memory usages and reduction in computational times.

The computational experiments also show that the BB&R algorithms had the
most difficulty with problem instances with relative due date range RD = 0.2. Nearly
all instances there were unsolved either because of memory or time limitations had
a relative due date range RD = 0.2. A small RD value correspond to having jobs
with closer due dates. This in turn can generate many solutions that have similar
objective function values. The impact of a narrow due dates range RD is also reported

in Ragatz (1993).
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Table 5.1: 1|STs4| > t; BB&R Algorithms: Average and Maximum CPU Time (sec.)
DFS DBFS BFS

N Avg. Max Avg. Max Avg. Max
10 004 027 002 011 0.02 0.13
12 023 35 009 1.08 0.09 098
14 1.3 172 04 3.7 038 34

16 64 1368 18 263 1.7 249
18 46.5 7075 94 1621 89 1485
20 1054 1800 356 569 324 512.3
22 1646 1800 85.3 1760 77.7 1599

Table 5.2: 1|STy| > t; BB&R Algorithms: Fraction Solved By Time Limit with
Different Exploration Strategies
DFS DBFS BFS
N 2255 15m 30m 225s 1om 30m 225s 15m 30m.
0 10 10 10 10 10 10 10 1.0 1.0
12 10 10 10 10 10 10 10 1.0 1.0
14 10 10 10 10 10 10 10 1.0 1.0
6 10 10 10 10 10 10 10 1.0 1.0
18 092 10 10 10 10 10 10 1.0 1.0
20 082 092 094 09 10 10 09 1.0 1.0
22 068 0.79 084 081 091 093 083 091 0.93
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Table 5.3: Performance of the Lower Bound Algorithms for the 1|STy4| " ¢; Schedul-
ing Problem

RLB KSJLB

N Avg% AvgGap Avg% Avg Gap
10 1.3 84.6 87.1 9.5
12 0.9 87.3 90.8 10.5
14 0.3 86.1 89.6 9.9
16 0.2 85.8 88.8 9.6
18 0.2 84.6 88.5 8.7
20 0.1 85.1 88.2 8.3
22 0.04 84 86.5 8.8
26 - - - -
30 - - - -

Table 5.3 also reports the data comparing the effectiveness between the RLB and
KSJLB algorithms for computing the lower bounds. The column labeled Avg %
reports the percentage of the bounds computed where the corresponding algorithm
provided a tighter lower bound. The column labeled Avg Gap reports the average
gap between the initial lower bound computed by the respective algorithm with the
optimal objective function value found. These results show that the RLB algorithm
provides a weaker initial lower bound compared to the KSJLB. On average, the
initial lower bounds computed by KSJLB were almost always within a 10% gap from
the optimal solution. The tighter initial gap from the computed lower bound by
the KSJLB algorithm provided significantly more pruning. Furthermore, most of
the pruning that was attributed to the bounds was done by the KSJLB algorithm.
However, it was observed that the RLB algorithm became much more effective towards
the end of the B&B search processes. The lower bounds computed by the RLB
algorithm were able to prune more branches when most jobs were already scheduled
relative to when fewer jobs were scheduled, as in the early stages of the B&B search
process. The lower bounds computed by the KSJLB algorithm otherwise provided
more consistent pruning throughout the B&B search process.

The performance of the BB&R algorithm with the BFS exploration strategy com-
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Table 5.4: 1|ST4| >~ t; BB&R Algorithms Comparison with Luo and Chu [72]
Luo and Chu (2006) BB&R with BFS
N CPU Sec. Solved (%) CPU Sec. Solved (%)

10 0.405 100 0.02 100
14 0.988 93.75 0.38 100
18 13.176 80.10 8.9 100
22 43.998 68.23 7.7 83.4
26 60.882 96.17 - -
30  100.83 47.5 - -

pares favorably to the computational results reported in Luo and Chu [72], both in
terms of speed and the percentage of the largest problems solved. Table 5.4 reports
the computational time of the BB&R algorithm with the BFS exploration strategy
and the computational time of Luo and Chu’s algorithm. Table 5.4 also reports the
percentage of problem instances solved to optimality with a 900 CPU seconds and a
225 CPU seconds time limit for Luo and Chu’s algorithm and the BB&R . algorithm,
respectively. Note that the experiments reported in Luo and Chu [72] were computed
on an Intel Pentium II 600 Mhz processor machine, whereas the experiments in this
chapter were executed on a Pentium D 2.4 Ghz processor machine. To adjust for
this difference in computing platform, the time limitation is reduced to a quarter of
the time limitation used in Luo and Chu {72]. With the adjusted time limitation,
the BB&R algorithms with BFS and DBF'S exploration strategies were able to solve
more problem instances. Table 5.4 shows that with the smaller problem instances,
the the BB&R algorithm with BFS exploration stratiegy can be an order of magni-
tude faster, however, with larger problem instances, Luo and Chu’s reported a faster
running time. Although the reported running time of Luo and Chu’s algorithm were
faster for the larger instances, these averages were computed with only instances that
were solved to optimality. The experiments in this chapter show that for larger in-
stances, there were more unsolved instances by Luo and Chu’s algorithm as compared

to the BB&R algorithm with BF'S exploration strategy. These unsolved instances can
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significantly increase the reported average running time of Luo and Chu’s algorithm.
Also note that the counter example described in Section 5.3 shows that the results

reported in Luo and Chu may be sub-optimal.

5.5 Conclusion

This chapter presents the BB&R algorithm with the BES exploration strategy for
solving the 1|STs4| >~ t; scheduling problem. A memory-based dominance rule is in-
corporated into the BB&R algorithm. A proof is also provided showing that the dom-
inance rule will not over prune. A B&R algorithm for solving the 1{| > ¢; scheduling
problem was also used for computing the lower bound for the 1|ST%4| > t; scheduling
problem. The computational results reported show that the BB&B algorithm with
the BFS exploration strategy is competitive, if not superior, to the best results re-
ported in the literature. Furthermore, the computational results also show that the
B&R algorithm for computing the lower bound is very efficient, consistently comput-
ing initial lower bounds with an average gap of less then 10%. Different exploration
strategies for the BB&R algorithm were also compared. The DBFS and BFS explo-
ration strategy provides a significant speed up over a traditional DFS exploration
strategy. The BFS exploration strategy is shown to be slightly better then the DBFS

exploration strategy.
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Chapter 6

Post Optimality Selection

The previous three chapters focuses on single objective combinatorial optimization
problems, however, many real-world optimization problems involve multiple (and of-
ten conflicting) objectives. These problems are relevant in a variety of engineering
disciplines, scientific fields, and various industrial applications {20, 33]. Unlike sin-
gle objective optimization problems, where one attempts to find the best solution
(global optimum), in multi-objective optimization problems, there may not exist one
solution that correspond to the best with respect to all objectives. Solving a multi-
objective optimization problems consist of generating the Pareto frontier, the set of
non-dominated solutions that represents the trade-off among the objective function
values. Different approaches are used to approximate and generate such sets of Pareto
optimal solutions. Some interactive approach incorporates preferences into the op-
timization procedure to explore a specific region of the solution space. While other
approaches focus on generating a diverse sets of Pareto optimal solutions. Such sets
of Pareto optimal solutions can be extremely large, which motivates the need for
post-optimality analysis for multi-objective optimization problems.

The area of post-optimality analysis addressed in this chapter focuses on obtain-
ing a preferred subset of solutions from a very large set of solutions with acceptable
objective function values. The goal in obtaining large sets of Pareto optimal solu-
tions is to provide the decision-maker with a diverse set of such solutions. Although
obtaining diverse Pareto optimal solutions is important, it is often impractical for a

human decision-maker to manually examine each such solution, and hence, efficiently
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identify a good subset of such solutions. Previous research in this area has focused
on generalizing the representation of the full set of Pareto optimal solutions with a
smaller subset [57, 73]. Such procedures are not post-optimality analysis procedures,
but rather, extensions to multi-objective optimization procedures, which are designed
to generate diverse sets of Pareto optimal solutions [75, 74, 57]. Another area of re-
search that incorporates preferences into the optimization procedures are interactive
methods [77, 78]. These interactive methods provide a decision-makes with better
control over the optimization process, allowing them to explore specific regions of the
search space. However, solutions obtained are quite sensitive towards the preferences
of the decision-maker. These approaches also require the decision-maker to have a
thorough knowledge of the problem. Korhonen and Halme [61] suggest the use of
a value function in helping decision-makers to identify the most preferred solutions.
Alternatively, to objectively evaluate and distinguish good subsets of Pareto optimal
solutions, Das [24] proposes an ordering and degree of efficiency among Pareto opti-
mal solutions, which provides a way to measure and prune out less desirable Pareto
optimal solutions.

This chapter analyzes a discrete optimization problem formulation for obtaining a
preferred subset of Pareto optimal solutions from a larger set. This formulation allevi-
ates the sensitivity of value function approaches, while obtaining a esired size subset, of
Pareto optimal solutions. Two exact algorithms are presented for solving the discrete
optimization problem. In addition, five heuristics that obtain near-optimal solutions
are introduced. The complexity of the discrete optimization problem formulation is
presented. The exact algorithms and‘ heuristics are applied to five test problems of
various sizes, to provide comparisons of their computational performances.

The chapter is organized as follows. Section 6.1 formally introduces the discrete
optimization problem formulation and necessary terminology and notation used in

this chapter. Section 6.2 discusses its complexity. Section 6.3 outlines the exact
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algorithms and other heuristics used to solve the discrete optimization problem. Sec-
tion 6.4 reports computational results of the heuristics and algorithm, including the
Greedy Reduction (GR) algorithm [103], applied to five test problems. Section 6.5

contains concluding comments and directions for future research.

6.1 Discrete Optimization Problem Formulation

This section formally presents the discrete optimization problem formulation that was
previously introduced in Venkat et al. (2004). A brief review of the definitions and
terminology used in Venkat et al. (2004) is provided.

Consider the multi-objective optimization problem:

min F(x) = (f/i(x), fo(x),..., fi(x)) =2 = (21,22, - ., 2&)
(6.1.1)

subject to: x € S

with k (> 2) objective functions f; : R* —» R, i = 1,2,... k, where the decision

variables x = (z1, Z2, ..., Z,) belong to the feasible region S C R".

Definition 6.1.1 A solution x* € S and its objective function vector z* = F((z*) €
F* is Pareto optimal if there does not exist another solution x € S such that fi(x) <

fi(x*) for alli=1,2,... k with f;(x) < f;(x*) for at least one j € {1,2,...,k}.

Let SO = {x!,x2,...,xV} C S denote a set of Pareto optimal solutions, which
may not contain the complete set of all Pareto optimal solutions. Let F* = {(=1, 22,
., 2) : z=F(x) for x € S} denote the feasible k-objective space.
A walue function V : F¥ — R, represents the preferences of a decision-maker
across the objective functions. It provides a total ordering for the set of Pareto op-
timal solutions. In general, the value function is assumed to be strongly decreasing

in its components (i.e., the preference of the decision-maker increases if the objec-
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tive function value decreases, given that the other objective function values remain

unchanged).

Definition 6.1.2 A percentile vector of a solution x? € SF°,j =1,2,..., N, is the
corresponding vector of percentile values p’ = (p{,p%, ...,p{;),j = 1,2,..., N, where
pl € (0,1] is a percentile ranking of the j* solution component based on the it"

objective function value.

By definition, given a set of Pareto optimal solutions, ST9, for every xi € SFO, j =
1,2,..., N, there exists a unique percentile vector p’. Therefore, there is a one-to-one

mapping for all x € SFO to some p’ € ¥, termed the percentile set defined below.

Definition 6.1.3 The percentile space (0, 1]* contain the percentile set p* = {p!, p?,
..,PV} C (0,1])%, where each percentile vector p’ is defined as the percentile values

corresponding to solution x/ € SFO.

A percentile function q : (0,1]* — R, is a value function on the percentile space.
Note that the percentile function ¢ has domain (0, 1]*, which contains the percentile
set p*. Therefore, a vector p’ € (0,1]¥ may not correspond to a percentile vector
in the percentile set, where ¢(p’) measures the desirability of solutions that have
percentile values that are at least as high as values for each component in p’.

The defined preferred Pareto optimal solution subset(s) can be obtained by solving
the following discrete optimization problem, first introduced in Venkat et al. (2004),

which optimizes the percentile function q.

max Q(plﬁp%"'apk>

subject to: |Ngyu| > N’ (6.1.2)

Nsubz{XESPO 3pi(X) Zpi;i:1a27-~-ak}7
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where N’ is the minimum number of solutions in the preferred subset of Pareto optima
SPO and p;, i = 1,2,...,k, correspond to the percentile threshold for each of the k
objectives. This discrete optimization problem formulation is termed the Preferred
Pareto Optimal Subset Problem (PPOSP).

Optimal solutions for the PPOSP are defined by percentile values p* € (0, 1]*,
termed the threshold percentile vector, where ¢(p*) is the maximum value such that
there are at least N’ solutions with percentile vectors that dominate p*, (i.e., if
p* = (p},p%,...,D}), then a percentile vector p’ = (p, p5, . - ., p}) dominates p* if for
every i = 1,2,...,k, p, > p}). The threshold percentile vector defines the preferred
reduced solution set N, based on the percentile function ¢. Each solution in N,y
is more desirable, having higher ¢ value than any solutions that do not dominate the
threshold percentile vector. By design, the only subjective parameters are N’ and the
percentile function.

The PPOSP is formulated over the percentile set. There are several advantages
in optimizing over the percentile set rather than the objective function space. In
many real world multi-objective problems, the objective functions typically have dif-
ferent evaluation metrics and units. For example, objective functions can measure
costs, distances or volume. There may also be a large range of values associated
with the different objective functions. Normalizing and adjusting these values require
application-dependent knowledge and expertise. The percentile set on the percentile
space uses a ranking (ordinal) approach, which normalizes the different objective
functions, comparing the relative order instead of the value of each objective func-
tion. Another advantage of working in the percentile space comes from a usability
perspective. It is often much easier for a decision-marker to visualize solutions in
terms of ranks as opposed to actual values. The ability to use actual values also
require detailed expert knowledge of the problem, where as ordinal ranking allows for

generalization. This ability to encapsulate the data for simpler representations can
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be beneficial to the subsequent decision process. By transforming the data into per-
centiles, detailed information regarding the objective function values of the solutions
will be lost. For example, the difference p; — p? may be small, while the difference
fr(z1) — fr(z2) may be large. However, the goal of PPOSP is to obtain a reduced
preferred subset of Pareto optimal solutions with minimal threshold values, and not
to single out the best preferred Pareto optimal solution. The final decision is still
dependent on the decision-maker’s final preferences. In addition, the PPOSP is not
limited to the percentile set, other normalization approaches can be used to capture
the differences in each objective function values.

The PPOSP can be generalized by using different range normalization approaches.

max q(nh ng;. .- nk)
subject to: |Ny| > N’ (6.1.3)

NN={XGSPO:ni(x)Zni,izl,Z,...,k},

where n;, 1 = 1,2,...,k, correspond to the threshold of the normalized value for
each of the k objectives. Within this framework, the normalization can be computed
based on the relative distances between the ideal and Nadir points. Normalizing
in this way, information associated with the objective function values is preserved.
Note that although it is relatively straightforward to obtain the ideal point, it can be
difficult to obtain the Nadir point. The ability for PPOSP to incorporate different
normalization scheme provides significant flexibility for the decision-maker.

It is important to also note that the optimal threshold vector to the PPOSP may
not be unique; it is possible to have multiple threshold vectors that maximize the
percentile function value. Since each threshold vector uniquely defines a reduced
subset N, then each threshold vector may lead to different subsets N, that are

optimal for PPOSP, and hence, the different optimal threshold vectors provide high
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level indicators to the quality of Pareto optimal solutions in Nyp.

There are two preferential parameters in PPOSP, the size of the desire subset, V',
and the structure of the percentile function, typically in the form of a value function
(e.g., a convex combination of the objective functions). The optimal threshold per-
centile vector(s) for the PPOSP define(s) the preferred reduced subset of solutions,
Ngup. Each of the threshold percentiles is analogous to the weight preferences used in
the value function approach (Korhonen and Halme 1990). However, instead of man-
ually assigning weight preferences for each objective function, this manual procedure
is captured within the PPOSP, which provides a method for filtering undesirable so-
lutions (i.e., solutions that do not satisfy the threshold values found by the PPOSP).
Finding such a reduced subset of Pareto optimal solutions reduces the burden on the

decision-maker to closely examine a large number of Pareto optimal solutions.

6.2 Complexity

This section shows that the corresponding decision PPOSP problem and the more
general decision problem, without the Pareto property, are both NP-complete. For
clarity, define e; to be a vector of size k, where all components are 0 except for the
th

i*" component. Now, a formulation of the corresponding decision problem for the

PPOSP and its more general form are given.

Dominating Pareto Subset Problem (DPSP)

INSTANCE: Finite Pareto set U C Z*, |U| = N, positive integer B and N’, where
N < N.

QUESTION: Does there exist a subset U’ C U, such that S+, min,epr(e; - u) > B
and |U'| > N'?

A more general formulation of the DPSP is to remove the Pareto restriction on
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the set U.

Dominating Subset Problem (DSP)
INSTANCE: Finite set U C Z*, |U| = N, positive integer B and N’, where N’ < N.
QUESTION: Does there exist a subset U’ C U, such that ZLI mingyey(e; - u) > B
and [U'| > N'? |

Prior to showing the complexity results of the DPSP and DSP, it is necessary
to introduce the Maximum Edge Biclique Problem, which is NP-complete (Peeters

2003), and its variation, Max N-M Biclique Problem.

Maximum Edge Biclique Problem (MEBP)
INSTANCE: Bipartite graph G = (V; U V,, E), positive integer K < |E|.
QUESTION: Does G contain a biclique with at least k edges?

Max N-M Biclique Problem (Max NMBP)
INSTANCE: Bipartite graph G = (V; U V4, E), positive integer N < |V4|, M < |V3].
QUESTION: Does G contain a biclique K; ; where ¢ > M and j > N7

The MEBP can be used to show that the Max NMBP is NP-complete.

Lemma 1 Max NMBP is NP-complete.

Proof: To prove that Max NMBP is NP-complete, first show that Max NMBP is in
NP,~ and then proves that it is NP-complete by showing that there is a polynomial
time reduction of MEBP to Max NMBP.

Given a biclique subgraph G’ = (V] UVy, E’), it takes O(|V{| + |VJ| + | E|) time to
verify that it is a biclique and that it is a subgraph of G. Therefore, Max NMBP is
in NP.

Given an arbitrary instance of MEBP ¢, define k particular instances of Max
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NMBP p;,i = 1,2,...,k. Define p; to have the same G as ¢, N =i and M = [k/i].
This transformation takes constant time for each p;, and O(k) time for all k instances.
To complete the proof, it is necessary to show that there is yes response for ¢ if and
only if there is a yes response to any p;.

Suppose that the answer to an arbitrary instance of ¢ is yes. This implies that
there exist a subgraph G'(V] U V3, E’), where G’ is a biclique and that |E’| > k. By
the design of the reduction, each possible minimal subset combination of |V}| = N
and |V;| = M are considered. Therefore, at least one instances of p; must be a yes.

Suppose that the answer to one of the particular instances of p is yes. This implies
that there exist a subgraph G'(V{ UV;, E') where G’ is a biclique and that |Vj| > N
and |V3| > M. By the design of the transformation, N = ¢ and M = [k/i]. The
number of edges in G’ is |E'| = N-M =i [k/i] > k. Therefore, G’ is a subgraph of

(G that is a biclique with k edges, and hence, the answer to ¢ must be yes O

By using the Max NMBP, it can be shown that the general DSP and DPSP are

both NP-complete.
Theorem 14 DSP is NP-complete.

Proof: Given a subset U’ C U, it takes O(|U’|) time to verify that min,ey/(u;) > B
and that there are at least N’ elements. Therefore DSP is in NP.

Given an arbitrary instance of the Max NMBP ¢, define a particular instance of
DSP p as follow: Without loss of generality let the set V; correspond to U, namely,
each node v; € V; is a |k|-tuple where k = |V3|. Also let V5 be an ordered set such
that each node v, € V; is labeled [(vp), where [ : V5 — {1,2,...,|V;2|}. Each node
vy corresponds to the [(vy) component for each of the |V,|-tuple in U. For each
element v; € Vi and it’s corresponding |V5|-tuple, the I(v,)™ component is 1 (0) if

and only if there is (not) an edge (vq,v;) € E. This defines the set U. Lastly, let
N' = N and B = M. This reduction takes O(|Vi}-|V4]) time. To complete the proof,
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it is necessary to show that there is a yes response for ¢ if and only if there is yes
response for p.

Suppose that the answer to an arbitrary instance ¢ is yes. This implies that there
exist a subgraph G'(V/UV;, E') where G’ is a biclique and that |V{| > N and |V;| > M.
By the transformation, each node v} € V{ corresponds to an element in U’. Since
every node v] is adjacent to every node v € V4, then each of such |Va|-tuple will have a
1 in the corresponding I(v5)*" component. Therefore, the summation of the minimum
value of each component over U’ must be at least M. Since |Vj| > M,|V1| > N,
B = M, and N’ = N, then the corresponding U’ defined by V} will have at least N’
elements where the summation of the minimum value of each component is at least
B, which means that answer to p must also be yes.

Suppose that the answer to the particular instance p is yes. This implies that
there exist a subset U’ such that |U’| > N’ and that & | min,ep(e; - u;) > B. Since
each k-tuple consist of either 0 or 1, then in order for Zle min,ep:(e; -u;) > B, there
must exist B components with value of over all ¥’ € U’. From the transformation,
for each «’, the corresponding v; must be adjacent to v4 hence the I(v})" component
is 1. Since every v] shares B such common components (namely V), then the sets
of nodes V/ and V; and edges (vy,v5) for all v; € V{ and v € VJ}, form a biclique.
Lastly, since |V{| = |U’'l = N’ = N and |VJ| = B = M, then it is a N-M Biclique,

and hence, the answer to ¢ must also be yes. O

Theorem 15 DPSP is NP-complete

Proof: Given asubset U’ C U, it takes O(|U’|) time to verify that > r_, min,ep:(u;) >
B and that there are at least N’ elements. Therefore, DPSP is in NP.

Given an arbitrary instance of DSP, ¢, it can be reduced in polynomial time to a
particular instance DPSP, p, such that a solution exist for ¢ if and only if a solution

exist for p. Given ¢, the transformation converts the non-Pareto set U to a Pareto
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set U,. Without loss of generality, let U be an ordered set, where each element
u € U has a corresponding label {(u) with { : U — {1,2,...,|U|}. Construct U,
in the following way: For each element u, append a |U|-tuple € {0,1}/V!, where the
I(w)** component is 1 and 0 for all other components (i.e., if u = (uy,...,u;) then
up = (up,y. .., U, 0,...,0,1,0,...,0)). Since only the u element has entry of 1 in the
I(u)*" component in the appended |U|-tuple, then the new set U, is by design Pareto.
Let N” and B remain the same. This transformation takes O(|U|) time. To complete
the proof, it is necessary to show that there is a yes response for ¢ if and only if there
is a yes response for p.

First, consider the case where N’ > 1. Suppose that the answer to an arbitrary
instance ¢ is yes. This implies that there exist a subset U’, where |U’| > N’ and
S minyep(e; - 4;) > B. Note since the transformed U, with the appended |U}-
tuples of 0’s and 1’s does not affect the sum, then the answer to p must be yes.

Suppose that the answer to the particular instance p is yes. Then there is a Pareto
subset Uy, where |U| > N’ and S miny cp;(€;-u;) > B. From the transformation,
the appended |U|-tuple to each element v € U has entry 1 only at the I(u)® compo-
nent, which implies that no two elements in U, have entry 1 at the same component in
the appended |U|-tuple. Since N’ > 1, then the minimum value for each component
in the appended |U|-tuple must be 0, which -does not affect Zle ming,eu; (€; - us).
Therefore, such a Uy, exist for p, then the same set excluding the appended |U|-tuples
will also satisfy ¢, which implies that the answer to ¢ must be yes.

Lastly, for the special case N’ = 1, it is trivial case that takes O(|U|) time. This

is because one can examine each percentile vector individually. (I

The DPSP is polynomial for & = 2 (i.e., for a bi-objective problem, the optimal
subset Ny can be found in O(|SFC}log |SFC|) time). To see this, sorting the solution
percentile vector along a single objective function provides an ordering, which also

implicitly provides an ordering for the second objective function (due to the Pareto
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property). Enumerating all consecutive N’ subsets of the ordered set finds the optimal
subset of Pareto optimal solutions (see Deterministic Sorted Local Search in Section

6.3.3).

6.3 Algorithms and Heuristics

This section introduces two exact algorithms and five heuristics for finding optimal /near-
optimal solutions for the PPOSP. Section 6.3.1 describes two different enumeration
approaches for the two exact algorithms. Sections 6.3.2 and 46.3.3 describe five
heuristics, which can be classified as constructive and local search heuristics. The
GR algorithm [103] is also re-examined in Section 6.3.4. Pseudo code for these algo-

rithms and heuristics can be found in [52].

6.3.1 Exact Algorithms

Two different enumeration approaches are presented for solving the PPOSP. Since
the threshold percentile vectors define unique subsets of Pareto optimal solutions, the
PPOSP can also be solved by enumerating over all threshold percentile vectors. This
enumeration takes O(|STC|F) time. Alternatively, another approach is to enumerates
all possible subsets of Pareto optimal solutions of size N’. This enumeration takes
O(|SPON") time. Clearly, depending on the parameters S”° N’ and k, the two
different brute force enumerations result in different running time performances. This
subsection formulates two different algorithms that solve the PPOSP using these two

different underlying enumeration approaches.

Diagonal Enumeration

The Diagonal Enumeration (DE) algorithm is a modification of the first brute force

enumeration approaches described above. The DE algorithm avoids enumerating over
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all combinations of threshold percentile values. Depending on the threshold percentile
vector, the corresponding subset Ny, may have size less than N’. In order for the
percentile value function to be maximized with respect to N’, the size of Ny, must
equal N'. If | Ngy| > N', by reducing the size of Ny, ¢ will either remain the same

or increase. Lemma 2 states this formally.

Lemma 2 IfU C ST and U’ C U, where p and p’ are the corresponding threshold

percentile vectors associated with U and U', respectively, then q(p) < q(p’)-

Proof: Since every u € U dominates p, then there must exist a @t € U such that
fl; = p;, for at least one i = 1,2,...,k. Let 4; = p; for some i € {1,2,...,k}. U’
can be one of two possible kinds of subsets; either 1 € U’ or 1 € U’. If &t € U’, then

p = p’, and hence, ¢(p) = ¢(p’). If & & U’, and since i is removed from U, and
p; > p; = 1;, then q(p) < ¢(p'). o

The DE algorithm exploits the results in Lemma 2 to avoid performing a full
enumeration by constructing a k-dimensional table (called the DE_table), where each
entry within the table corresponds to a subset of Pareto optimal solutions. By design,
each of the k£ dimensions corresponds to the k objective functions, where the indices
along each of the dimensions corresponds to percentile values. These indices also
represent the sorted order of the percentile values (i.e., index i along dimension j
corresponds to the " smallest percentile value of the 5% objective function.) The
index of each entry can therefore be mapped to a valid threshold percentile vector. For
example, let p’ denote the i** percentile value in objective function j. Then if there
are three objective functions (i.e., £ = 3), an index in the k-dimensional DE_table,
(z,y,2) would corresponds to the threshold percentile vector (pf,p%,p3), and the
entry that corresponds to index (z,y, z), DE_table[z,y, z] would contain the subset of

Pareto optimal solutions defined by the threshold percentile vector (p%, p§, ps).
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The enumeration is done by systematically constructing the DE_table, where each
entry DE_table [z1,z2,...,zx] can be constructed by taking the set intersection of
DE_table[zy, xa—1,25—1,...,xx—1], DE_table[z1~1, 20, 2z3—1,24—1,... 2% —1],. ..,
DE_table[zy — 1,22 — 1,... 251 — 1,z4] (see Figure 6.1). The algorithm constructs
the DE_table in a diagonal manner (as illustrated in Figure 6.2). The advantages
in constructing the DFE_table in such a manner is to avoid a full enumeration. If
all entries along a single diagonal pass of the DFE_table fail to contain at least N’
elements, then the enumeration process can be terminated, since all diagonal passes
thereafter will only contain percentile vectors with larger components. Furthermore,
it is unnecessary to enumerate indices along a particular dimension if the size of the
corresponding subsets are less than N’ (i.e., if entry DFE_table[z, y, z] contain less then
N’ elements, it is unnecessary to enumerate entries with index (i,y, z), where i > z,
(z,4,2), where j > y, and (z,y, k), where k > z). In the worst case, this algorithm

will construct the entire DE._table, and hence, the running time is O(|SFC¥).

Obj. 1, percentile values

=ifj

Obj. 2, percentile values

Figure 6.1: Two Dimensional Example of DE_table for the PPOSP.
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Figure 6.2: Two Dimensional Traversal of DE_table for the PPOSP.

Branch and Cut Algorithm

The DE algorithm solves the PPOSP by enumerating all combinations of percentile
values of the threshold percentile vector. Alternatively the PPOSP can be solved
by enumerating all subsets of Pareto optimal solutions of size N'. This enumeration
approach is used to construct the Branch and Cut (BC) algorithm.

This enumeration approach can be done by constructing |S¥?| search trees, where
each node of a search tree corresponds to a subset of Pareto optimal solutions, and
the root of each search tree is a unique element of S¥C. The second level of each of
the search trees consists of all 2-element subsets constructed by adding a new element
to the root. The third level consists of all 3-element subsets by adding a new element
to its parent. Each level of the search trees is constructed by adding a new element
to the parent. Therefore, each search tree will have at most N’ levels, where if all of
such search trees are fully constructed, then this corresponds to enumerating all N’
subsets.

The BC algorithm constructs each N’ search trees, starting at the root. However,
it avoids performing a full enumeration by deciding whether to branch or cut at each
node of the different search trees. Since each node in the search tree corresponds

to a subset of Pareto optimal solutions, the corresponding percentile function value
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can also be calculated. If at any node, the percentile function value is less than the
current best percentile function value of a subset with N’ elements, a cut is performed
at that node and further enumeration along that branch is unnecessary, since from
Lemma 2, any further branching along such nodes will only decrease the percentile
function value.

A random subset of Pareto optimal solutions of size N’ is generated for the initial
best-to-date percentile function value. The higher the initial percentile function value,
the less branching that is needed for the enumeration. However, in the worst case,
the BC algorithm corresponds to enumerating all subsets of Pareto optimal solutions

of size N, and hence the worst case running time is O(|SPC|V).

6.3.2 Constructive Heuristics

This subsection introduces two constructive heuristics for finding good solutions to
the PPOSP. The Greedy Constructive Elimination heuristic creates a preferred subset
of Pareto optimal solutions by eliminating elements from SFC until the size of the
preferred subset is N'. In contrast, the Greedy Constructive Expansion heuristic
builds a preferred subset of Pareto optimal solutions by adding elements to an empty
set until the size of the subset is N’. Both of these heuristics use a greedy selection

rule.

Greedy Constructive Elimination

The Greedy Constructive Elimination (GC-) heuristic starts by considering the full
set of Pareto optimal solutions S¥C. It then finds a subset of SFC of size N’ by
iteratively eliminating elements from SF°. The percentile vector, which provides the
best improvement over the percentile function value if it is removed, is eliminated at
each iterative step. In the case of ties, a randomly selected percentile vector among

the ties is eliminated. This heuristic has running time of O(]S¥9|).
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Greedy Constructive Expansion

The Greedy Constructive Expansion (GC+) heuristic is motivated by the Branch
and Cut algorithm. Like the BC algorithm, it starts by considering |S¥°| subsets of
Pareto optimal solutions, each with a single distinct elément of SP©. However, unlike
the BC algorithm, at each level in constructing a search tree, the GC+ heuristic
greedily selects the best node to branch (i.e., an element is added to the current
subset(parent) only if it decreases the percentile function value of the current subset
the least). In the case of ties, a random solution is selected. A cut is performed, as
in the BC algorithm, based on the best-to-date percentile function value. The GC+
heuristic builds |ST©| such search trees with distinct roots, where each search tree is
a simple path of length at most N’

Since each of the elements in S¥9 are used as the initial subsets, there could be
|SPO| different subsets of Pareto optimal solutions of size N’ (i.e., each of the |SF9|
different search trees) . The intuition behind this heuristic is to find an optimal
constructive ordering (i.e., an optimal ordering of increasing the initial subset such
that the resulting subset of Pareto optimal solutions is optimal), where constructing

each subset of Pareto optimal solutions takes O(|SFC| . N’) time. Since there are

|SFO| such starting subsets, the worst case running time for the GC+ heuristic is

O(|SPO|2 A N’).

6‘.3.3 Local Search Heuristics

This subsection introduces three local search heuristics. Local search heuristics are

typically characterized by the following three steps:
1. Generate a feasible solution, s.

2. Attempt to find an improved feasible solution s’ in a neighborhood of s.
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3. If improved solution is found, replace s with s’. Repeat from Step 2.

The Deterministic Sorted Local Search heuristic examines subsets based on the sorted
ordering of each objective function. This heuristic is different from the typical local
search heuristic in that it uses a fixed deterministic neighborhood. The Element Ex-
change Local Search heuristic and the Percentile Neighborhood Local Search heuris-
tic differ primarily in their neighborhood functions. While the Element Exchange
Local Search heuristic defines its neighborhood function by altering the subset of
Pareto optimal solutions, the Percentile Neighborhood Local Search heuristic defines

its neighborhood function by perturbing the threshold percentile vector.

Deterministic Sorted Local Search

The Deterministic Sorted Local Search (DSLS) heuristic examines subsets of Pareto
optimal solutions of size N’ by only considering percentile vectors sorted by one of the

SP0 is sorted k times by each objective function (i.e.,

objective functions. Therefore,
there are k different sorted ordering of S¥©), where each of the k sorted orderings is
examined by considering subsets of size N’ with consecutive elements in the sorted
SO The best percentile function value found is then returned. Since traversing each
sorted SFO takes linear time, the sorting of ST© dominates this heuristics’ running
time. In particular, the DSLS heuristic has running time O(k|SF°|log |SF°)).
Lemma 3 shows that in a bi-objective problem, a subset of Pareto optimal solutions
cannot have the maximum percentile function value unless the subset contain only
elements that are consecutive in a sorted ordering based on one of the objective

functions. Using this result, the DSLS heuristic finds the optimal subset of Pareto

optimal solutions for the bi-objective problem.

Lemma 3 Let U C SO C R?, (4,02) € U. If there exists some (uy,uz), (v1,v2) €

U such that uy > Gy and vy > Ug, then the corresponding percentile function value of
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U cannot be the optimal.

Proof: This result can be proved by constructing a new subset U with a larger
percentile function value. Suppose that there exist such a (i, i2) € U. Furthermore,
without loss of generality, let (u;,u2) € U such that uy; > uf for all (u},us) € U,
and let (vy,vp) € U such that vy > uj for all (u,u,) € U. By the definition of the
Pareto Property a new subset can be constructed, U = U/{(us, ug)} U{(f1, 6i2)} or

U = U/{(v1,v2)} U{(%i1, ©1) } will only increase the percentile function value. O

By the Pareto property, sorting SFC based on one of the objective functions
implicitly sorts the other objective function values. This ordering is a necessary
condition for optimality, as shown in Lemma 3 for k = 2. Moreover, since Lemma 2
states that the optimal subset must be of size N’, then the DSLS heuristic must find

the optimal solution for the bi-objective problem.

Element Exchange Local Search

The Element Exchange Local Search (EELS) heuristic uses a single element exchange
neighborhood function. The single element exchange neighborhood function trans-
forms a feasible subset of Pareto optimal solutions by substituting percentile vectors
in and out of the current feasible subset of Pareto optimal solutions. By design, this
single element exchange neighborhood function can enumerate all possible subsets
of size N’. This neighborhood function is quite general and provides limited direc-
tion for the local search. To provide more restrictions and to increase efficiency of
the local search, two greedy modifications are added. The first modification forces
the neighborhood function to greedily select the best element for the single element
exchange, which provides the largest improvement to the percentile function value
of the current feasible subset of Pareto optimal solutions. The second modification

limits the candidate percentile vectors considered for the feasible subsets of Pareto
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optimal solutions. An element that has been removed from the current subsets of
Pareto optimal solutions is eliminated from any further consideration. The single
element exchange neighborhood function is modified to only consider elements in the
pool, defined as the set of candidate elements that have not been considered in any
feasible subsets.

These two greedy modifications significantly increase the efficiency of the EELS
heuristic. Since each percentile vector can be exchanged into a feasible subset at most
once, and at each iteration there are at most |S¥ | comparisons, then the worst case
running time for a single starting initial feasible subset is O(]S¥°(?).

The single element exchange neighborhood function is of size | SF|. One variation
of this neighborhood function is to perform multiple element exchanges. However,
increasing the number of exchanges also increases the size of the neighborhood. Since
the size of the neighborhood increases exponentially, greedily selecting the best per-
centile vector would be infeasible, although such an expanded neighborhood would
reduce the number of local optima. To avoid being attracted to the same local opti-
mum, the EELS heuristic is restarted with new random initial subsets. If the number
of restarts is given by C, then the worst case running time for the EELS heuristic is

O(C - |SFOP?).

Percentile Neighborhood Local Search

The Percentile Neighborhood Local Search (PNLS) heuristic is motivated by the DE
algorithm. Recall that each entry in the DE_table corresponds to a subset of Pareto
optimal solutions. The DE algorithm may enumerates many subsets of Pareto optimal
solutions, with sizes much larger than N'. Lemma 2 shows that these subsets of Pareto
optimal solutions are not optimal. The PNLS heuristic modifies the DE algorithm by
avoiding enumeration of entries with corresponding subsets of size greater than N'.

The neighborhood function for the PNLS heuristic maps each entry in the DE_table
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to a set of neighboring entries, where an entry is then visited based on the size
constraint and the percentile function value. The neighbor of an entry is defined as
follows: (u1,us, . ..,ux) is aneighbor of (vy,va, ..., vg) if ju;—v;| < 1fori=1,2,... k.
The intuition behind this neighborhood function is that neighboring entries should
correspond to subsets of similar sizes. By setting the initial entry with a corresponding
subset of size N’, this allows the heuristic to examine entries with corresponding
subsets of similar sizes. In the worst case, this neighborhood function may enumerate
the full DE_table.

The PNLS heuristic biases the neighbor selection to avoid enumerating the full
DE_table. A new neighboring entry is selected based on the size of the corresponding
subset as well as the corresponding percentile function value. Subsets of size N’ with
improving percentile function value are considered first. The heuristic terminates
when a threshold, given by 7', of non-improvement neighboring searches are made.

The PNLS heuristic is initialized at a starting entry where the size constraint is
at equality. To find such a starting entry, select one objective function 7, and set
the percentile function vector to be (0,...,p;,...,0). An entry with subset of size
N’ can be found by increasing the percentile value p;, which then can be used as the
initial entry for the PNLS heuristic. This can be repeated for each of the k objective
functions. Since the PNLS heuristic searches for the optimal solution in a state space
of size |SFO|k then it has a worst case running time of O(|SF°|¥), similar to the DE

algorithm.

6.3.4 Greedy Reduction Algorithm

The idea of capturing a preferred subset of Pareto optimal solutions by optimizing the
PPOSP was introduced in [103]. They describe and analyze the Greedy Reduction
(GR) algorithm for obtaining a subset of Pareto optimal solutions from a larger set

of such solutions. The GR algorithm executes in linear time, O(|SPC|/N’). This
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Table 6.1: Counter Example for the GR Algorithm.

Percentile Values

i fa 3 q
1.0 1.0 0.1 2.1
09 0.9 0.2 2.0
0.5 0.5 0.9 1.9
08 04 0.6 1.8
04 0.3 1.0 1.7
06 0.2 0.8 1.6
0.7 0.1 0.7 1.5
0.1 08 0.5 14
02 07 0.4 1.3
03 0.6 0.3 1.2

chapter also provides computational results of applying the GR algorithm to five
multi-objective optimization problems. The Pareto optimal solution sets for each of
these problems were generated by using five interactive optimization methods. Several
different values of N’ were tested with the GR algorithm, which provides an efficient
way to generate a subset of Pareto optimal solutions from a larger set.

The GR algorithm attempts to maximize the percentile function g using a greedy
element elimination strategy. At each iteration, it only considers the best N’ solu-
tions according to the ordering of the percentile function values. It then finds the
corresponding threshold vector that satisfies these N’ solutions, and eliminates all
the solutions that fail the threshold. This is repeated until no solutions remain. The
maximum threshold vector obtained across all iterations is the resulting solution.

The drawback of such an approach is that solutions may be eliminated prema-
turely. Greedily selecting the top ¢ values does not measure the potential contribution
of individual percentile values. Table 6.1 provides a counterexample to the optimality
result reported in Venkat et al. [103]. Each row in the table corresponds to an element
in 3. There are ten elements in the Pareto optimal solution set. If the decision-maker
wants a reduced set of size N’ = 3, the GR algorithm will fail to find the reduced

subset, and hence, contradicts the optimality result of the GR algorithm reported in
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Table 6.2: First Iteration of the GR Algorithm Applied to Table 6.1 Example.
Percentile Values

f fa fs q
1.0 1.0 0.1| 2.1

09 09 02 20
09 19
0.8 0.4 0.6 1.8
0.4 0.3 1.0 1.7
0.6 0.2 0.8 16
0.7 0.1 0.7 15
0.1 0.8 0.5 14
0.2 0.7 04 1.3
0.3 0.6 0.3 1.2

Venkat et al. [103]. Table 6.2 depicts the first iteration of the GR algorithm. The
top three solutions, rows 1, 2, 3, are selected, and p™”" = (0.5,0.5,0.1) as indicated
by the boxed values in Table 6.2. The remaining solutions are then eliminated from
consideration, failing to meet the threshold. The algorithm terminates after the first
iteration, returning the first three solutions with percentile function value 1.1. How-
ever, 1.1 is not the optimal value for this instance. In particular, if rows 1, 2, 4 are
selected, then the optimal solution is found with p™" = (0.8,0.4,0.1), and percentile

function value 1.3.

6.4 Computational Results

This section reports computational results of the algorithms and heuristics described
in Section 6.3, applied to five multi-objective optimization problems. Test Problem
1 consists of three non-linear convex objective functions with bounded constraints.
Test Problem 2, adapted from [82], consists of three non-linear convex objective func-
tions with non-linear constraints. Test Problem 3, taken from Van Veldhuizen [102],
consists of three non-linear non-convex objective functions with bounded constraints.

Test Problem 4 is a randomly generated Pareto optimal solution set in ®*, containing
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Figure 6.3: The PPOSP: Test Problem 1 Percentile Function Value Results.

2000 Pareto optimal solutions, while Test Problem 5 is a randomly generated non-
Pareto set in ®*, with 2000 solutions over the same variable range for Test Problem
4. See Venkat et al. [103] for specific details of these problems.

An exhaustive enumeration procedure was executed to obtain the true Pareto
optimal solution set for Test Problems 1, 2, 3. In particular, the feasible region is
sampled via a fine grid to capture the true Pareto optimal solution sets. Because
of the size of Test Problems 4, 5, only computational results with the five heuristics
are reported. Other enumeration and approximation methods to generate the set of
Pareto optimal solutions can be found in Ehrgott [32], Ehrgott and Gandibleux {33]
and Miettinen [77].

The PPOSP is formulated for each test problem, where the percentile function is
of the form, q(p1,p2,...,px) = Z:;lpi. Figures 6.3, 6.4, 6.5 report computational
results using the DE algorithm and heuristics for Test Problems 1, 2, 3, respectively.
The EELS heuristic and the PNLS heuristic were repeated ten times, using a new

random initial solution for each run. The threshold used for the PNLS heuristic
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Figure 6.4: The PPOSP: Test Problem 2 Percentile Function Value Results.
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Figure 6.5: The PPOSP: Test Problem 3 Percentile Function Value Results.
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Table 6.3: The PPOSP: Percentile Function Value Ratio
Test Problem 1

N |DSLS/DE GC-/DE GC+/DE EELS/DE PNLS/DE GR/DE

40 0.902 0.947 0.998 0.996 1.0 0.947
80 0.921 0.973 1.0 0.987 1.0 0.918
120 0.908 0.985 0.997 0.993 1.0 0.890
160 0.923 0.983 1.0 0.997 1.0 0.832
200 0.918 0.978 1.0 0.991 1.0 0.816
240 0.884 0.980 1.0 0.980 0.987 0.807

Test Problem 2

N’ | DSLS/DE GC-/DE GC+/DE EELS/DE PNLS/DE GR/DE

50 0.819 0.928 0.995 0.960 0.991 0.906
100 0.833 0.855 0.997 0.972 0.995 0.910
150 0.857 0.854 1.0 0.943 1.0 0.912
200 0.865 0.823 1.0 0.965 0.989 0.890
250 0.855 0.852 1.0 0.962 1.0 0.848
300 0.860 0.878 0.993 0.950 0.973 0.811

Test Problem 3

N |DSLS/DE GC-/DE GC+/DE EELS/DE PNLS/DE GR/DE

50 0.905 0.975 1.0 0.934 1.0 0.564
100 0.907 0.922 1.0 0.936 1.0 0.575
150 0.909 0.928 1.0 0.908 1.0 0.596
200 0.889 0.856 0.999 0.910 1.0 0.607
250 0.897 0.929 1.0 0.951 1.0 0.624
300 0.916 0.915 1.0 0.952 1.0 0.639
350 0.890 0.944 0.999 0.945 1.0 0.651
400 0.916 0.912 0.998 0.975 1.0 0.667
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Figure 6.6: The PPOSP: Test Problem 4 Percentile Function Value Results.
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Figure 6.7: The PPOSP: Test Problem 5 Percentile Function Value Results.

110



was 1000 non-improving iterations. The DE algorithm and each of the local search
heuristics where initialized as described in Section 6.3. Table 6.3 reports the ratio
of the percentile function value found by each of the heuristics over the optimal
percentile function value obtained by the DE algorithm. The numbers of Pareto
optimal solutions generated with the sampling scheme for Test Problems 1, 2, 3, were
441, 650, and 1075, respectively. Different ranges of N’ were used for each of the test
problems. Size parameter N’ = 40, 80, 120, 160, 200, 240, N’ = 50, 100, 150, 200, 250,
300, and N’ = 50, 100, 150, 200, 250, 300, 350, 400 were applied to Test Problems
1, 2, 3, respectively. Note that as N’ increased to |S¥©|, the percentile function
value solved by each of the heuristics converges. In particular, if N’ = |SF©|, then
the optimal percentile function value will be Zle minpegro p;, which is depicted in
Figures 6.6, 6.7 for the two larger test problems.

The computational results reported for Test Problems 1, 2, 3 suggest that the GC+
heuristic and the PNLS heuristic can be very effective in finding the optimal subset of
Pareto optimal solutions. Figures 6.4, 6.5 depict a comparison of the computational
results obtained from applying the heuristics to Test Problems 1, 2, 3. From Table
6.3, the GC+ heuristic found the optimal solutions 12 out of 20 experimental runs,
and the PNLS heuristic found the optimal solutions 15 out of the 20 experimental
runs, including all the optimal solutions for Test Problem 3 for each N’. The lowest
GC+/DE ratio and PNLS/DE ratio across Test Problems 1, 2, 3 are 0.995 and 0.973,
respectively. Although the EENS heuristic did not find the optimal solutions for
Test Problems 1, 2, 3, it was still very efficient, always obtaining solutions within 10
percent of the optimal solutions. The GC- heuristic, the DSLS heuristic, and the GR
algorithm always found solutions within 20 percent of the optimal solutions for Test
Problems 1, 2. However, as the size of S¥© increased, the quality of solutions found
by the GR algorithm degraded, as illustrated by Test Problem 3 (see Figure 6.5). The

GC- heuristic and DSLS heuristic found solutions within 15 percent of the optimal
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solutions for Test Problem 3, while the GR algorithm failed to find any solutions
within 30 percent of the optimal solutions. Moreover, as N’ increased, quality of
solutions found by the GR algorithm degraded, while this is not the case for the
heuristics introduced in this chapter.

Figures 6.6, 6.7 depict a comparison of the computational results obtain from
applying the five heuristics to Test Problems 4, 5, respectively. These heuristics were
applied to these two test problems with N’ = 100, 200, 300, 400, 500, 1000. The PNLS
heuristic and the EELS heuristic were repeated with ten different randomly generated
initial solutions. The threshold used for the PNLS heuristic was 1000 non-improving
iterations. The optimal solutions for Test Problems 4, 5 are unknown. However, by
comparing the percentile function values, the GC+ heuristic clearly out performs the
other four heuristics. The EELS heuristic obtained larger percentile function value
in Test Problem 5; this is most likely due to the relaxation of the Pareto property in
Test Problem 5. Since the EELS heuristic uses an element exchange neighborhood
function, the Pareto property ensures that when exchanging an element from the
preferred subset, some component of the threshold percentile vector must increase
while others must either remain constant or decrease. However, without the Pareto
restriction, the negative effect of exchanging a poor percentile vector into the preferred
subset is mitigated (i.e., each components of the threshold percentile vector may all
increase). It is not apparent whether the Pareto property has an effect on the other
heuristics. Although the PNLS heuristic performed well for Test Problems 1, 2, 3, it
performed poorly in Test Problems 4, 5, which is likely due to the large problem size.

Tables 6.4, 6.5 report the experimental running time for applying the algorithms
and heuristics to the five test problems. All experiments were executed on a 997MHz
Intel Pentium IIT processor. The GR algorithm and the GC- heuristic were the two
fastest heuristics. The DE algorithm had the slowest experimental running time,

which is not surprising since it had to perform an exponential time enumeration. Of
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Table 6.4: Algorithms and Heuristics for the PPOSP: Average Running Time (CPU
Seconds)
Test Problem 1
N'| DE DSLS GC- GC+ EELS PNLS GR
40 | 49962 1.3 0.2 110 69 276 0.1
80 | 46268 1.7 0.2 451 134 278  0.21
120 | 39076 1.9 0.2 1120 162 316 0.2
160 | 28448 2.0 0.2 1891 193 329 0.2
200 | 22806 2.0 0.2 2762 176 340 0.15
240 | 14897 1.9 0.2 3773 180 350 0.3
Test Problem 2
N’ DE DSLS GC- GC+ EELS PNLS GR
50 | 53312 2.3 03 279 154 726 0.2
100 | 134710 2.9 0.3 1238 300 580 0.2
150 | 136038 3.6 04 2930 431 758 0.1
200 | 142055 3.5 0.5 5941 512 474 0.1
250 | 144775 3.6 04 8682 533 609 0.1
300 | 104832 3.6 04 12436 543 553 0.1
Test Problem 3
N’ DE DSLS GC- GC+ EELS PNLS GR
50 | 781127 4.3 0.1 108 333  445.2 0.2
100 | 886240 5.0 0.3 695 676  445.9 0.2
150 | 820453 5.8 0.4 1910 1529 5344 0.3
200 | 967034 6.6 0.6 4343 1809 5347 0.2
250 | 933062 7.3 0.7 8842 2119 6286 0.2
300 | 932000 7.8 0.8 15444 2361 6374 0.3
350 | 919328 8.2 1,0 25424 2579 765.3 0.2
400 | 1012952 8.7 1.2 36671 2701 6626 0.2
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the five heuristics, the GC+ heuristic had the slowest experimental running time,
however it was also the most effective heuristic in finding optimal and near-optimal
solutions. The GC+ heuristic also had memory limitations due to the recursive
nature. On the other end of the quality performance trade-off spectrum, the PNLS
heuristic was the fastest, but only managed to find solutions within 20 percent of the
optimal solutions for the small problems. For Test Problems 4, 5, the PNLS heuristic
found solutions that had significantly smaller percentile function value (i.e., up to 30
and 50 percent less than those solutions found by the GC+ heuristic in Test Problems
4, 5, respectively). The PNLS heuristic, the EELS heuristic, and the GC- heuristic
provided a quality performance trade-off spectrum in decreasing experimental running
time, respectively. For Test Problems 1, 2, 3, the quality of solutions is positively
correlated with the increase of running time. However, for Test Problem 4, 5, this
correlation did not follow for the PNLS heuristic. Note that although the experimental
running time for the PNLS heuristic gracefully increased with the increase in the size
of SPO_ the quality of solutions found were similar to those found by the GC- heuristic
and the EELS heuristic, both of which had significantly faster experimental running
times. Lastly, notice that as N’ increased and approached |S¥?|/2, the experimental
running time also increased, which corresponds to the worst case analysis where the

5lsPO)

number of possible subsets is maximized (i.e., O( \AS—POT))

6.5 Conclusion

Multi-objective optimization problems occur in numerous real-world applications.
Solving such problems can yield large sets of Pareto optimal solutions. This chapter
examined the question of identifying preferred subsets of Pareto optimal solutions.
The formulation of the discrete optimization problem, PPOSP, is designed to assist a

decision-maker in finding preferred subsets of Pareto optimal solutions. The PPOSP
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Table 6.5: Algorithms and Heuristics for the PPOSP: Average Running Time (CPU
Seconds)
Test Problem 4 .
N | DSLS GC- GC+ EELS PNLS
100 7 2.3 16180 748 1676
200 9 2.2 47090 1565 1793
300 11 2.2 86380 2442 1866
400 13 2.2 135500 3221 1933
500 15 2.1 - 3834 2011
1000 | 19 1.6 - 4866 2559
Test Problem 5
N | DSLS GC- GC+ EELS PNLS
100 7 24 2220 755 1743
200 9 2.3 19640 1638 1854
300 12 24 61790 2518 1818
400 14 2.3 117000 3459 1942
500 15 2.3 - 4195 2029
1000 | 21 1.8 - 5657 2549

is unique, in that it allows the decision-maker to obtain a desirable subset size N’,
based on threshold values for each objective functions. It does not require expert
knowledge in finding such reduced preferred subset, which allows the decision-maker
to focus on smaller sets of preferred Pareto optimal solutions. In addition, unlike typ-
ical value function approaches, the PPOSP is formulated (but not limited to) in the
percentile space, which provides an ordinal approach in addressing the post-optimality
selection problem.

The decision formulation of the PPOSP is formulated and proven to be NP-
complete, which corrects the optimality results reported in Venkat et al. [103]. Two
exact algorithms, the DE algorithm and the BC algorithm, are provided for solving
the PPOSP to optimality. Five heuristics are also presented, which provide a spec-
trum of heuristics with varying trade-offs in solution quality and run time efficiency.
The experimental results reported suggest that the GC+ heuristic can yield the best
results, if running time can be sacrificed. Otherwise the EELS heuristic provided the

best trade-off, efficiently returning quality solutions. The experimental results from
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Test Problems 1, 2, 3 also suggest that the PNLS heuristic can be effective for smaller
problems.

The heuristic presented in this chapter does not require the set of solutions to
be Pareto. Although the decision problem for a non-Pareto set is also proven to be
NP-complete, it is not clear what the impact of the Pareto property has on these
heuristics. The Pareto property provides structure to the feasible solution set for the
PPOSP. For bi-objective problems, the DSLS heuristic uses this structure to find the
optimal solution. However, it is not apparent how one can exploit such structure in
higher dimensional problems.

The PPOSP introduces a new approach to address the post-optimality selection
problem. It provides a framework that defers the need of expert knowledge in the
decision process, reducing the burden of the decision-maker to only focus on preferred
reduced subsets of Pareto optimal solutions. The use of the percentile set provides one
level of encapsulation. Providing higher levels of encapsulation, while retaining the
consistency of the decision-maker preferences, is an area of current research activity.
Another area of research is to address the scalability of the heuristics and algorithms
higher dimensional problems. The ultimate goal of this effort is to design a fully

automated post-optimality selection process.
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Chapter 7

Summary

The research presented in this dissertation focuses on two topics in combinatorial
optimization, designing efficient exact algorithms for several single machine scheduling
problems, and formulating a discrete optimization problem for addressing the post-
optimality selection problem.

The BB&R algorithms have been shown to outperform the current best algorithms
in the literature for the 1|r;| > Ui, 1|r:] > t;, and 1]ST,q4| > ¢; scheduling problems.
Computational results show that the BB&R algorithms are very effective, and that
they are capable of solving even larger test instances than the ones reported in the
literature. A new DBFS exploration strategy is also introduced and incorporated
into the BB&R algorithms. By design, the DBFS exploration strategy works in
conjunction with the memory-based dominance rules to explore fewer states. Chapter
3 and 4 show that the DBFS exploration strategy provides a significant computational
speedup compared to DFS and best first search exploration strategies. Chapter 5
shows that the DBFS exploration strategy is comparable to the best first search
strategy for the 1|ST,4| Y t; scheduling problem. In addition, several new dominance
rules and bounding schemes for these scheduling problems are also presented. The
combination of explicit memorization of states, new exploration strategy, dominance
rules, and improved bounds computation demonstrate that the BB&R algorithms are
very efficient. These results show that the BB&R algorithms have the potential to
solve other combinatorial problems.

Although the results of the BB&R algorithms for these three scheduling problems
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presented in this dissertation are very promising, the BB&R algorithms do have
their limitation. By explicitly storing every visited state, the BB&R algorithms can
incur a significant memory overhead. This is most noticeable in Chapter 5 when
the BB&R algorithm is used for solving the 1|ST,4| > t; scheduling problem. The
time limitation imposed on the algorithm did not constrain the performance of the
algorithm, whereas, the memory limitation caused many unsolved problem instances.
Despite the negative results due to the memory limitation, the effect of the memory
limitation could be potentially curtailed by stronger dominance rules and bounding
schemes. With stronger dominance rules and bounding schemes, this could provide
early pruning of the search tree reducing the number of explicitly stored states while
boosting the overall performance of the algorithm. However, if there are fewer states
stored, this can reduce the effectiveness of the memory-based dominance rules. The
key on improving the performance of the BB&R algorithms is to find a balance
among the different components such that each component can benefit one another.
In addition, it is also worthwhile to incorporate multi-core computing architecture
technologies with the BB&R algorithm and DBFS exploration strategy. By design,
the DBF'S exploration strategy contains the features needed to take advantage of a
distributed environment. Distributed computing strategy can provides substantial
improvements in both memory management and computational processing time.
The research effort presented in Chapter 6 on the PPOSP formulation addresses
the second topic of this dissertation on post-optimality selection. The new PPOSP
formulation provides a framework that reduces the burden on the decision-maker by
using limited expert knowledge to find a preferred reduced subset of Pareto optimal
solutions. A new ordinal ranking approach is used in the PPOSP formulation that
provides one level encapsulation. The PPOSP formulation can be viewed as a specific
normalization procedure by using the percentile set. Other normalization approaches

can be beneficial and might result in different preferred subsets of Pareto optimal
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solutions. Using different normalization strategies can provide one method of sensi-
tivity analysis to the PPOSP formulation. This sensitivity analysis could be helpful
in assessing the benefit in using this framework. Furthermore, it would also be inter-
esting to consider applying other scalarizing functions to the percentile vectors. This
can also be very helpful in assessing the benefits of using an ordinal ranking approach

and can also enhance the significance of the general framework.
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