
www.manaraa.com

TWO COMBINATORIAL OPTIMIZATION PROBLEMS AT THE INTERFACE
OF COMPUTER SCIENCE AND OPERATIONS RESEARCH

BY

GIO K. KAO

B.S., University of Illinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor Sheldon Jacobson, Chair
Associate Professor Chandra Chekuri
Associate Professor Jeff Erickson
Professor Edward Sewell, Southern Illinois Univeristy Edwardsville
Dr. Laura Swiler, Sandia National Laboratories (non-voting)

www.manaraa.com

UMI Number: 3337976

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3337976

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

© 2008 Gio K. Kao

www.manaraa.com

Abstract

Solving large combinatorial optimization problems is a ubiquitous task across multiple

disciplines. Developing efficient procedures for solving these problems has been of

great interest to both researchers and practitioners. Over the last half century, vast

amounts of research have been devoted to studying various methods in tackling these

problems. These methods can be divided into two categories, heuristic methods and

exact algorithms. Heuristic methods can often lead to near optimal solutions in a

relatively time efficient manner, but provide no guarantees on optimality. Exact

algorithms guarantee optimality, but are often very time consuming.

This dissertation focuses on designing efficient exact algorithms that can solve

larger problem instances with faster computational time. A general framework for

an exact algorithm, called the Branch, Bound, and Remember algorithm, is proposed

in this dissertation. Three variations of single machine scheduling problems are pre

sented and used to evaluate the efficiency of the Branch, Bound, and Remember

algorithm. The computational results show that the Branch, Bound, and Remember

algorithms outperforms the best known algorithms in the literature.

While the Branch, Bound, and Remember algorithm can be used for solving com

binatorial optimization problems, it does not address the subject of post-optimality

selection after the combinatorial optimization problem is solved. Post-optimality se

lection is a common problem in multi-objective combinatorial optimization problems

where there exists a set of optimal solutions called Pareto optimal (non-dominated)

solutions. Post-optimality selection is the process of selecting the best solutions within

ii

www.manaraa.com

the Pareto optimal solution set. In many real-world applications, a Pareto solution set

(either optimal or near-optimal) can be extremely large, and can be very challenging

for a decision maker to evaluate and select the best solution.

To address the post-optimality selection problem, this dissertation also proposes

a new discrete optimization problem to help the decision-maker to obtain an optimal

preferred subset of Pareto optimal solutions. This discrete optimization problem is

proven to be NP-havd. To solve this problem, exact algorithms and heuristic methods

are presented. Different multi-objective problems with various numbers of objectives

and constraints are used to compare the performances of the proposed algorithms and

heuristics.

in

www.manaraa.com

To my parents for teaching me the importance of hard work and higher education

To the memory of my grandfather Prof. S.F. Kao for being my inspiration

To my grandmother Por Por for all her life lessons when I was a child

IV

www.manaraa.com

Acknowledgments

This dissertation would not have been possible without the help and support of count

less people. I especially want to thank

• My adviser and mentor, Dr. Sheldon H. Jacobson for not just teaching me how

to become a successful student and researcher, but also the many lessons on

how to succeed in life. Without his guidance and his constant encouragement,

I would not have finished.

• Dr. Edward C. Sewell for all of his guidance in helping me put together many

research ideas, and his truly exceptional insight and feedback regarding much

of our work. Without his help as well, I would not have finished.

• My committee members, Dr. Chandra Chekuri and Dr. Jeff Erickson for their

guidance and feedback.

• Dr. Laura P. Swiler for being my co-mentor at Sandia National Laboratories,

for providing me with excellent guidance and feedback on my research, and for

giving me many research ideas.

• Dr. James E. Campbell for being my mentor at Sandia National Laboratories,

and for continuing to be my mentor even after his retirement. His guidance and

encouragement both at work and in life are irreplaceable.

• Dr. Dan Roth for his guidance for my undergraduate work, for his encourage

ment to pursue a Ph.D., and for his help in getting me into graduate school.

v

www.manaraa.com

• Dr. Russ D. Skocypec, Dr. Robert M. Cranwell, and Bruce M. Thompson for

giving me the research opportunities at Sandia National Laboratories, and for

being so understanding and patient with my dissertation.

• Dr. Jean-Paul Watson, Craig Lawton, Dr. Dan Briand, Dr. John Eddy, and

all my other co-workers at Sandia National Laboratories for all their help and

support throughout all those summers.

• Sandia National Labboratories for awarding me the Sandia National Labbo-

ratories Fellowship that provided me with the opportunity to work and gain

invaluable experience.

• The Air Force Office of Scientific Research (FA9550-07-1-0232) and Austral

Engineering and Software, Inc. that provided funding for this research.

• Dr. Luke Olson for his advice on graduate school, and for his patience on the

Ultimate Frisbee field.

• Dr. Gary L. Ragatz and Dr. Antoine Jouglet for their help in part of my

research.

• My labmates through the years, Dr. Hemanshu Kaul, Dr. Shane N. Hall, Dr.

Laura A. McLay, Ruben Proano, Alex Nikolaev, Adrian Lee, Doug King, JD

Robbins, and Alex Duda for their friendship, feedback, and support.

• Calvin K. Wong, Terry H. Wong, Neil Patel, Shaun Law, Kristie Tong, Matt

Dryden, Betty Earle, Helen Mao, and Marci Meingast for all their friendship,

support, and encouragement since the beginning of this project, and for helping

me survive through many of my personal obstacles.

• Tanya Crenshaw, Erin Wolf, Shamsi Iqbal, and Jacob Biehl for all their help,

advice and feedback.

vi

www.manaraa.com

• All my friends throughout the years in Champaign-Urbana for their help in

keeping me grounded and sane. In particular, Tommy Yun, Steve Long, Annie

Cheever, Lauren Jakubowski, Pahn Pataramekin, Natalie Bowerman, Abhi Rao,

Travis Dixon, and Maggie Burns for putting up with me.

• The Champaign-Urbana ultimate frisbee community, Prion, and the Illinois

Men's Team for giving me an outlet from work, and keeping me in shape.

• Jane C. Bailie for all the cookies, brownies, and sandwiches, and more impor

tantly for helping me get through the hard times.

• Katie Dorry, the cutest beagle in the world, for always waiting at home for me.

• My aunty, Lulu Bagaman for her support, for teaching me many heartfelt

lessons, and for her insightful perspective on viewing the world.

• My parents, Christina and Leo Kao for believing in me, and for challenging me

to overcome all obstacles.

• My brother, Ron Kao for taking care of home while I was away for so many

years.

• Tamary Alvarez for all those unforgettable joyful and happy moments, for the

motivation, for all her tangible and intangible encouragement and support, and

for telling me to finish!

• God for everything.

vn

www.manaraa.com

Table of Contents

List of Tables x

List of Figures xii

Chapter 1 Introduction 1

Chapter 2 Background 5
2.1 Branch and Bound 5
2.2 Meta-heuristics 9

Chapter 3 The l | r ^ ^ Scheduling Problem 11
3.1 Dominance Rules 12
3.2 Memory-based Dominance Rule 17
3.3 Branch, Bound, and Remember Algorithm 19

3.3.1 Bounding Scheme 20
3.3.2 Branching and Dominance Scheme 22
3.3.3 Enhancements to the BB&R Algorithm 26

3.4 Computational Results 28
3.5 Conclusion 35

Chapter 4 The l | r ; | X ^ Scheduling Problem 38
4.1 Background and Notations 39
4.2 Dominance Rules 41
4.3 Bounding Scheme 49
4.4 Branch, Bound, and Remember Algorithm 52
4.5 Computational Results 55
4.6 Conclusion 65

Chapter 5 The l | 5 r a d | S * i Scheduling Problem 67
5.1 Notations 69
5.2 Branch, Bound, and Remember Algorithm 70

5.2.1 Dominance Rule 70
5.2.2 Bounding Scheme 71
5.2.3 The Algorithm 73

5.3 Counterexample 75

vin

www.manaraa.com

5.4 Computational Results 77
5.5 Conclusion 83

Chapter 6 Post Optimality Selection 84
6.1 Discrete Optimization Problem Formulation 86
6.2 Complexity 90
6.3 Algorithms and Heuristics 95

6.3.1 Exact Algorithms 95
6.3.2 Constructive Heuristics 99
6.3.3 Local Search Heuristics 100
6.3.4 Greedy Reduction Algorithm 104

6.4 Computational Results . . . 106
6.5 Conclusion 114

Chapter 7 Summary 117

References 120

Author's Biography 129

IX

www.manaraa.com

List of Tables

3.1 l | r i | £ t f i BB&R-DBFS Algorithms: Average amd Maximum CPU
Time (sec.) 30

3.2 l\ri\J2Ui BB&R Algorithms: Average CPU Time (sec.) with LA-
NDDOR 31

3.3 l\ri\ Y, Ui BB&R Algorithms: Standard Deviation in CPU Time (sec.)
with LA-NDDOR 32

3.4 l\ri\Y,Ui BB&R-DBFS Algorithms: Average CPU Time (sec.) with
Different Dominance Rules 33

3.5 l\n\J2 Ui BB&R-DBFS Algorithms: Maximum CPU Time (sec.) with
Different Dominance Rules 34

3.6 EDP vs. MLJ Upper Bounds Comparison for the l|rj| J2 Ui Scheduling
Problem 36

4.1 BLB and the Decomp-DP Lower Bounds Comparison for the l |rj | YlU
Scheuduling Problem in CPU Time (sec.) 56

4.2 BLB and Decomp-DP Lower Bounds Comparison for the l | r j | ^£ j
Scheduling Problem in CPU Time (sec.) and Percentage Solved (Larger
Instances) 57

4.3 1 \n\ £ U BB&R-DBFS Algorithm: Average and Maximum CPU Time
(sec.) 59

4.4 \\ri\YjU BB&R-DFS Algorithm: Average and Maximum CPU Time
(sec.) 60

4.5 l|rj | Y/ti BB&R-DBFS Algorithm: Maximum and Average Number of
Stored States (a = 0.5,/? = 0.5) 62

4.6 \\ri\YsU BB&R-DBFS Algorithm Using Jouglet et al. [50] Test In
stances in Average CPU Time (sec.) 63

4.7 l l ^ l ^ i ; JBC Algorithm Using Jouglet et al. [50] Test Instances in
Average CPU Time (sec.) 64

5.1 l|Srad |X)*i BB&R Algorithms: Average and Maximum CPU Time
(sec.) 80

5.2 l\STsd\ Y,U BB&R Algorithms: Fraction Solved By Time Limit with
Different Exploration Strategies 80

5.3 Performance of the Lower Bound Algorithms for the 1 \STsd\ ^2 U Schedul
ing Problem 81

x

file:////ri/YjU
file:////ri/YsU

www.manaraa.com

4 l\STsd\ J^ti BB&R Algorithms Comparison with Luo and Chu [72] . 82

1 Counter Example for the GR Algorithm 105
2 First Iteration of the GR Algorithm Applied to Table 6.1 Example. . 106
3 The PPOSP: Percentile Function Value Ratio 109
4 Algorithms and Heuristics for the PPOSP: Average Running Time

(CPU Seconds) 113
5 Algorithms and Heuristics for the PPOSP: Average Running Time

(CPU Seconds) 115

XI

www.manaraa.com

List of Figures

3.1 Upper Bound Extended Dynamic Programming Algorithm for the 1 |r;|]T Ui
Scheduling Problem 23

3.2 Outline of DBFS 26
3.3 BB&R-DBFS Pseudo-Code for the l\n\^2Ui Scheduling Problem . . 27
3.4 LA-NDDOR Pseudo-Code for the I N £ U i Scheduling Problem . . . 28

4.1 BB&R Pseudo-Code for the 1 \nIEU Scheduling Problem 54

6.1 Two Dimensional Example of DE-table for the PPOSP 97
6.2 Two Dimensional Traversal of DE-table for the PPOSP 98
6.3 The PPOSP: Test Problem 1 Percentile Function Value Results. . . . 107
6.4 The PPOSP: Test Problem 2 Percentile Function Value Results. . . . 108
6.5 The PPOSP: Test Problem 3 Percentile Function Value Results. . . . 108
6.6 The PPOSP: Test Problem 4 Percentile Function Value Results. . . . 110
6.7 The PPOSP: Test Problem 5 Percentile Function Value Results. . . . 110

xn

www.manaraa.com

Chapter 1

Introduction

In the past decade, there has been an explosion of work at the border of computer

science research and operations research. Traditionally, researchers in both fields have

remained separate, but recent research has started a compilation of work among the

researchers in both fields. Journals and conferences have been established to explore

this boundary between computer science and operations research. Special interest

articles and books have been published since; helping researchers in both communities

to gain new perspectives and to leverage each others work [3, 12, 41, 42, 43, 83]

Despite the relative independence in the fields of computer science and operations

research, these two disciplines share a large number of common problems. Two of

the most common overlaps between the two fields are in the area of combinatorial

optimization and decision analysis. These areas have emerged as a great challenge

both academically and practically. Research and development in the two areas can

lead to both practical and theoretical significance.

Some of the classic combinatorial optimization problems that have been of great

interest to computer scientists and operations researchers are the traveling salesman

problem [23], the quadratic assignment problem [60], various job shop scheduling

problems [64], and many other ./VP-hard combinatorial optimization problems [38].

The area of decision analysis also has a significant overlap between computer science

and operations research. Both fields are in pursuit with strategies in decision support

as well as autonomous decision making. This is most noticeable in the computer

science sub-field of artificial intelligence.

1

www.manaraa.com

Although researchers in both fields have limited interaction, they do share some

key conceptual backgrounds. For example researchers in both fields study and use

techniques from computational complexity theory, algorithms, probability theory,

graph theory, and game theory. What sets the researchers in the two fields apart is

the different perspective on approaching the problems. In the area of combinatorial

optimization, computer scientists are recently focusing on approximation algorithms

[101] and randomized algorithms [81], while operations researchers study traditional

mathematical programming [22], heuristics and meta-heuristics [11].

This dissertation focuses on two main topics at the intersection of computer science

and operations research. The first topic of interest is designing efficient exact algo

rithms for solving large combinatorial optimization problems. A modified branch and

bound (B&B) algorithm, called Branch, Bound and Remember (BB&R) algorithm is

presented through three different single machine scheduling problems. One objective

of the work in this dissertation is to seek out optimal methods that can solve combi

natorial optimization problems with larger instances and with faster computational

speed.

The second topic of interest is in the area of decision making, namely post opti

mally selection. That is given a set of optimal solutions, how can decision-makers

select the best solution(s) from the optimal set? In a multi-objective combinatorial

optimization environment, it is common for an algorithm to return not just a single

optimal (nearly optimal) solution, but a set of Pareto optimal (nearly optimal) so

lutions. In many real-world applications, such Pareto solution sets can be extremely

large. A new discrete optimization problem formulation is presented in this disserta

tion to help the decision-maker obtain an optimal preferred subset of Pareto optimal

solutions.

This dissertation is organized as follows. Chapter 2 presents the background

on B&B algorithms, and an introduction to the BB&R algorithm that is used for

2

www.manaraa.com

solving several single machine scheduling problem presented in Chapters 3, 4, and 5.

Backgrounds on meta-heuristic methods are also presented. Chapter 3 presents the

BB&R algorithm with the Distributed Best First Search (DBFS) exploration strategy

for solving the 1|T*J| ^ Ui scheduling problem [56]. Several new dominance rules for the

l|r,| Yl Ui scheduling problem are reported. Theoretical results are presented showing

that the dominance rules presented in Chapter 3 can be combined to form an exact

algorithm. Computational results are also reported that establish the effectiveness of

the BB&R algorithm with the DBFS exploration strategy for a broad spectrum of

problem instances and sizes for the l|r;| J2 Ui scheduling problem.

A variation of the BB&R algorithm with the DBFS exploration strategy is pre

sented in Chapter 4 for solving the l|r;| J2 U scheduling problem [55]. Several memory-

based dominance rules for the l|rj | Y^i scheduling problem are incorporated to the

BB&R algorithm. A new modified dynamic programming algorithm is also presented

to efficiently compute lower bounds for the l | r j | ^ i j scheduling problem. Compu

tational results are reported, which show that the BB&R algorithm with the DBFS

exploration strategy outperforms the best known algorithms reported in the literature

[4, 27, 71, 72, 76].

Chapter 5 also presents a BB&R algorithm for solving the 1| Y STsd\ Y U schedul

ing problem [54]. The Best First Search (BFS) exploration strategy and a new

memory-based dominance rule are incorporated into the BB&R algorithm, which effi

ciently solves the 1| J2^sd\ YU scheduling problem. A counterexample to a known

dominance rule presented in [72, 71] is also provided. New computational results are

reported that demonstrate the effectiveness of the algorithm.

Chapter 6 formulates a discrete optimization problem called the Preferred Pareto

Optimal Subset Problem (PPOSP) for the post optimality selection problem [53]. The

PPOSP helps decision-makers obtain a reduced subset of preferred Pareto optimal

solutions. Theoretical properties of the PPOSP are reported, and several algorithms

3

www.manaraa.com

and heuristics are also presented.

The dissertation is summarized in Chapter 7. Some concluding remarks on the

BB&R algorithm and the PPOSP formulation are provided [53, 54, 56, 55].

4

www.manaraa.com

Chapter 2

Background

Three single machine scheduling problems are used to establish the effectiveness of

the BB&R algorithm proposed in this dissertation. Scheduling problems are com

mon combinatorial optimization problems that have attracted widespread interest

within the domains of manufacturing, transportation, computer processing, produc

tion planning, as well as computational complexity theory [8, 13]. These problems

involve solving for an optimal schedule under various constraints and objectives (e.g.,

machine environments, job characteristics). For example, single or multiple machines,

job shop or flow shop models, and job preemptions are all variants of scheduling prob

lems. Various objectives include minimizing makespan, number of late jobs, and total

tardy time; see [8, 13, 44, 62, 87, 93] for reviews of various scheduling problems.

An overview of B&B algorithms used for solving the scheduling problems, and

meta-heuristic methods used for post-optimality selection are provided in this chapter.

This chapter is organized as follows. Section 2.1 provides a brief introduction to B&B

algorithms, while Section 2.2 provides a brief introduction to meta-heuristic methods

for multi-objective combinatorial optimization.

2.1 Branch and Bound

B&B algorithms are one of the most common techniques for solving large iVP-hard

combinatorial optimization problems [39, 104]. Solving these NP-hard combinato

rial optimization problems to optimality can be very challenging. B&B algorithms

5

www.manaraa.com

are general search methods that implicitly search the entire feasible solution space

to find an optimal solution. To apply B&B algorithms, there must be a means of

computing lower and upper bounds on an instance of the combinatorial optimization

problem, and a means of dividing the feasible region of a problem to create smaller

sub-problems. Various parameters and components of a B&B algorithm must be

tailored based on the specific definition of the combinatorial optimization problem.

The underlying concept for any B&B algorithms is divide and conquer. The orig

inal problem is divided into many smaller sub-problems. These smaller sub-problems

can be either solved or eliminated for consideration based on bounding information

generated from other sub-problems. This allows the B&B algorithm to implicitly

enumerate the feasible solution space without examining all feasible solutions. In

general, a B&B algorithm can be viewed as building and exploring a search tree

that represents the entire feasible solution space. The two main components for any

B&B algorithm are the branching scheme, which constructs the search tree, and the

bounding scheme, which prunes and eliminates branches from the search tree.

The branching scheme consists of partitioning the entire feasible solution space

into smaller and smaller subsets. Each subset can be further divided into smaller

subsets. Each node in the search tree represents a subset, and the order of visiting

each subset is part of the exploration strategy. The exploration strategy consists

of two interrelated components, a heuristic function that measures the goodness of

each node, and an overall tree traversal scheme. Together they determine a range of

exploration strategies, from a depth-first search strategy, where the heuristic function

depends on the depth of a node, to a best-first search strategy, where the heuristic

function value takes priority.

The bounding scheme determines what branches of the search trees still need to

be explored. One key component is the bounding function. Such a bounding function

estimates how good a feasible solution may be generated from exploring a particular

6

www.manaraa.com

node. If the bounding function gives a tight bound, then the node can be prune or

fathomed. In addition to pruning by bound, dominance relationships may also be used

to reduce the number of branches in the search tree. A node dominates another node

if the dominated node can only lead to solutions that are no better than solutions

found by exploring the dominant node. These dominance relationships are typically

problem specific, and are dependent on the characteristics of the solution structure.

The BB&R algorithm [55, 54, 56] considers a new technique within the general

B&B algorithm framework. The key component of the BB&R algorithm consists of

using enhanced memon/-based dominance relationships, where states are memorized

and compared. A new exploration strategy, namely the Distributed Best First Search

(DBFS), which exploits the benefits of both the depth-first search strategy and the

best-first search strategy, is also incorporated into the BB&R algorithm. Chapters 3,

4, and 5 introduce variations of the BB&R algorithm for three different scheduling

problems.

The use of dominance relationships in B&B algorithm is not new. The concept of

storing states in memory to help build an optimal solution is also not an entirely new

concept. Dynamic programming [9] shares a similar concept, where optimal solutions

are built backwards, following a sequence of optimal decisions. Tabu search [40] stores

previously visited solutions for guiding the local search process. As mentioned above,

dominance rules are problem dependent. Note that there are some similar concepts in

the artificial intelligence planning community. Heuristic searches [105, 106] are used

to solve large planning problems. These heuristic searches are typically graph-based

and are used to explore large state-spaces. The objective of these heuristic searches

is to find a path from a node representing a start state to a node that represents a

goal state. Every visited node in the search process is stored in memory. By storing

all nodes, this avoids exploring nodes that have previously been visited. This idea of

avoiding duplicates of previously visited nodes is similar to the dominance rules used

7

www.manaraa.com

in the BB&R algorithm.

The general framework of the BB&R algorithm are outlined by the following steps:

Step 1: Compute upper and lower bounds ub and lb for the optimization problem.

Step 2: Generate a root node.

Step 3: Insert the root node into a heap.

Step 4: If the heap is not empty then go to the next step. Otherwise, the optimal

solution is found and the algorithm stops.

Step 5: Obtain a current node by removing the top node from the heap.

Step 6: Using non-memory based dominance rule filter out the possible branching

from the current node.

Step 7: For each new subproblem use memory-based dominance rule to further elim

inate dominated branches.

Step 8: For each remaining subproblem compute a lower bound lb.

Step 9: If lb > ub then prune the current node by going to Step 6. Otherwise, go to

the next step.

Step 10: For each remaining subproblem generate a new node and add the new node

to the hash table (for memory-based dominance rules) and the heap.

Step 11: Go to Step 6.

Note that the heap data structure can be interchange with other data structure

changing the exploration strategy.

8

www.manaraa.com

2.2 Meta-heuristics

Although exact algorithms like B&B algorithms guarantee finding the optimal solu

tion, they are often impractical for large combinatorial optimization problems. In the

last few decades, there has been an increasing interest in meta-heuristics methods

for solving combinatorial optimization problems. The three most popular approaches

are simulated annealing, tabu search, and evolutionary algorithms. Meta-heuristics

methods do not provide any guarantees and could lead to sub-optimal solutions (see

[11] for a survey of meta-heuristics methods for combinatorial optimization problems).

The second topic of interest in this dissertation addresses post-optimality selection for

multi-objective combinatorial optimization problems. This section provides a brief

overview of the different meta-heuristic used.

Simulated annealing, as the name suggests evolved from the idea of the anneal

ing process, the gradual solidification process of cooling of a liquid. Several multi-

objective simulated annealing algorithms (MOSA) have been proposed. Some refer

ences include [21, 49, 100]. The differences across these proposed MOSA are their

implementation on scalarization of the objective functions, neighborhood functions,

and the temperature adjustment rules for varying the acceptance probability.

Another common method is tabu search, a memory based method. The key

concept is the incorporation of a tabu list, which memorizes previously visited states.

The tabu lists are used to guide the search process into unexplored regions of the

search space. Some references for multi-objective tabu search (MOTS) include [7, 37,

47]. The differences across these MOTS are their implementation on using multiple

tabu lists for each objective function and the variation on using short, intermediate,

and long term memory tabu lists.

Perhaps the most popular of the three methods discussed here are evolutionary

algorithms. Evolutionary algorithms have been the dominant focus in multi-objective

9

www.manaraa.com

combinatorial optimization. The fundamental concept underlying these methods is

survival of the fittest. These are population dependent approaches, where solutions

compete among each other and are modified based on evolution procedures. Several

surveys and books in multi-objective evolutionary algorithms have been published in

recent years, including [18, 19, 20, 28, 29, 46]. A few popular evolutionary algorithms

include Multi Objective Genetic Algorithm [35], Non-dominated Sorting Genetic Al

gorithm II [30], and Pareto Archived Evolution Strategy [59].

Combinations of the different approaches mentioned above have also been pro

posed for multi-objective combinatorial optimization problems, including combina

tion of simulated annealing and genetic algorithms [15], combination of local search

and genetic algorithms [48], and interactive methods with simulated annealing and

tabu search [78, 92].

10

www.manaraa.com

Chapter 3

The l |r^|^L^ Scheduling Problem

The scheduling problem addressed in this chapter is the single machine scheduling

problem, denoted as l |rj |^C/j [68]. The problem consists of a set of jobs J =

{1,2, . . . , n} to be scheduled in sequence, where associated with each job is a release

time Vi, a processing time Pi, and a due-date di. The indicator variable Ui — 0 if

job i is scheduled on time, and Ui = 1 if job i is late. A job is considered late if the

completion time q of a scheduled job i is greater than its due-date di. By design, late

jobs can be arbitrarily appended to the end of the sequence of on-time jobs. Without

loss of generality, assume that r, + pi < di for alii = 1,2,..., n. The objective of the

l\ri\ ^2Ui scheduling problem is to minimize the number of late jobs, min^" = 1 Ui,

where jobs are scheduled on a single machine without preemptions.

The l\ri\Y2Ui scheduling problem is iVP-hard [68]. The more general prob

lem, where jobs are weighted, l|r;| Yl^iUi, is iVP-hard in the strong sense [68].

Polynomial-time special cases of l|rj | ^ C / J include when the release times are equal

or when the jobs are similarly ordered (i.e., r̂ < rj => di < dj); these can be solved

in O(nlogn) time [79, 66, 58].

Exact methods for solving the l|rj |]T)t/j scheduling problem include branch and

bound (B&B) algorithms [76, 6, 27], a mixed integer linear program formulation [63],

and a combination of constraint propagation and B&B methods [5]. Dauzere-Peres

and Sevaux [26] also propose a Lagrangean relaxation algorithm based on a new mixed

integer linear programming formulation. Dauzere-Peres [25] provides lower bounds

based on a relaxation of a mixed integer linear programming formulation as well as

11

www.manaraa.com

the minimizing Late Job (MLJ) heuristic. Meta-heuristics such as genetic algorithms

have also been developed and applied to the problem [94]. M'Hallah and Bulfin [76]

and Peridy et al. [86] also present results for the weighted version of the scheduling

problem.

This chapter introduces the Branch, Bound, and Remember (BB&R) algorithm,

an exact algorithm that can be used to solve the l|r;| ^ Ui scheduling problem. Sev

eral dominance rules for the l|rj | Yl U are presented in the next two sections, including

enhancements to two previously known dominance rules as well as a new memory-

based dominance rule. A new dynamic programming algorithm is also introduced

and used to compute tighter upper bounds for the l|r;| Y1U scheduling problem. A

BB&R algorithm using the Distributed Best First Search (DBFS) exploration strat

egy [55] is described and compared to the traditional depth-first search (DFS)and

best-first search (BFS) exploration strategies. The computational results reported

indicate that the BB&R algorithm outperforms the current best known algorithms.

The chapter is organized as follow. Section 3.1 describes three nonmemory-based

dominance rules for the l | r j |^£/ j scheduling problem: the Early Job Rule (EJR),

the Nearly Due Date Order Rule (NDDOR), and the Idle Time Rule (ITR). Section

3.2 describes a new memory-based dominance rule as well as a proof showing that

the dominance rules presented in this chapter can be combined to form an exact

algorithm. Section 3.3 provides details of the BB&R algorithm with the DBFS ex

ploration strategy. Computational results are reported in Section 3.4, followed by

concluding comments in Section 3.5.

3.1 Dominance Rules

This section formally presents three dominance rules, two of which are extensions

of dominance rules introduced in Baptiste et al. [6] and Dauzere-Peres and Sevaux

12

www.manaraa.com

[27]. A brief introduction to dominance rules, as well as the necessary notation are

provided.

Dominance rules are properties that exploit the structure of optimal solutions,

and hence, can be used as pruning strategies. More specifically, these rules identify

properties that at least one optimal solution must satisfy. Therefore, these dominance

rules can prune many solutions, including optimal solutions. However, they will not

prune all optimal solutions. Baptiste et al. [5, 6] present several dominance rules

that they incorporated into their B&B algorithm. Dauzere-Peres and Sevaux [26, 27]

also suggest a dominance rule incorporated into both their B&B algorithm and their

Lagrangean relaxation method for a mixed integer programming formulation. These

dominance rules are designed to provide a significant reduction in the search space.

To describe these dominance rules, the following notations and assumptions are

needed. Jobs are assumed to be sorted by due-date (i.e., i < j => di < dj V (dt =

dj A ri < Tj)). Let a — (<7i, oi, • • •, &m) be a sequence of on-time jobs, where a, 6 J

for i = l,2,...m. Let

• ca denotes the completion time of the sequence of on-time jobs,

• cai denotes the completion time of job cr, (define cCTo = 0),

• sCi denotes the start time of job oi (define s<Tm+1 = ca),

• S(j = {o"i, o"2,..., <?m} denotes the set of jobs that have been scheduled on time,

• Ta denotes the set of jobs that must be tardy,

• Fa = J\ (Sa U Ta) denotes the set of unscheduled free jobs,

• Ec denotes the set of free jobs that must be on-time,

• fa = max{cCT, minjG^ rj} denotes the earliest start time for the next possible

job that can be scheduled,

13

www.manaraa.com

• TPC = YALI Vci denotes the sum of the processing times for the scheduled jobs.

Given a sequence a — (ax,..., am) of on-time jobs, assume that jobs are started as

soon as possible, i.e., sai = max(c(T._1,r(J.).

Baptiste et al. [6] present a dominance rule that identifies jobs that must be on

time; the enhanced version of this dominance rule will be referred to as the Early

Job Rule (EJR). Dauzere-Peres and Sevaux [27] present a dominance rule that is

based on the due-dates of the jobs; the enhanced version of this dominance rule will

be referred to as the Nearly Due Date Order Rule (NDDOR). These two dominance

rules are guaranteed (individually) to not prune all optimal solutions. Unlike the

previously proposed dominance rules, these dominance rules are dynamic (i.e., they

can be applied when constructing the sequence of on-time jobs). Note that, dynamic

dominance rules are not new; Baptiste et al. [5] applied dynamic dominance rules

along with their global constraint propagation method.

Baptiste et al. [6] present the EJR dominance rule as a pruning rule based on

their decomposition of the search space. The original dominance rule proposed by

Baptiste et al. [6] considers only static parameters, such as job processing times,

release times and due-dates, while the EJR is dynamic, in that it considers job start

times and completion times, which are sequence dependent variables. The EJR is

now formally defined.

Definition 3.1.1 Early Job Rule (EJR)

A sequence of on-time jobs a — (a"i,o"2,... ,am) satisfies the Early Job Rule if the

following condition holds: For all i £ Ta, there does not exist aj, j = 1, 2, ...,m such

that (pi < pa. V (pi =p<Jj A « < o-j)) Amax(c(T;i._1,rj) + pi < min(dj , sGj+1).

The NDDOR dominance rule is motivated by the observation that among the

on-time jobs, those with earlier due-dates should be scheduled first. The NDDOR is

a stronger version of a dominance rule proposed in Dauzere-Peres and Sevaux [27].

14

www.manaraa.com

The NDDOR is more restrictive since it considers the start times of scheduled jobs as

opposed to only the release times. Like the EJR, it is dynamic and provides greater

pruning. The NDDOR is now formally defined.

Definition 3.1.2 Nearly Due Date Order Rule (NDDOR)

A sequence of on-time jobs a = (o"i, o"2,..., am) satisfies the Nearly Due Date Order

Rule if the following condition holds: for j — 2 , . . . , m (o~j_1 < o-j) V (s(Ti_1 < raj).

In addition to the EJR and NDDOR, a simple Idle Time Rule (ITR) can further

reduce the number of solutions that need to be examined. The ITR is now formally

defined.

Definition 3.1.3 Idle Time Rule (ITR)

A sequence of on-time jobs a = (cri,a"2,... ,am) satisfies the Idle Time Rule if the

following condition holds: For all j — 1, 2 , . . . , m — 1, there does not exist k G J\Sa

such that max^jfe,^.) +pk < mm(dk,saj+1).

The ITR eliminates unnecessary idle time from sequences of on-time jobs. The

motivation behind this rule suggests that jobs should be scheduled as soon as possible.

Idle time places more time constraint on unscheduled jobs, and hence, should be

eliminated.

All three dominance rules introduced in this section can be used simultaneously to

reduce the solution space while not pruning out all optimal solution. This is formally

stated in Theorem 1. The following definitions are needed prior to presenting this

result.

Definition 3.1.4 Let z be the number of on-time jobs in an optimal schedule. Let

1 if the machine is idle during (t — 1, t),
I (a, t) = [

0 otherwise.

15

www.manaraa.com

Let

• £1 denote the set of all optimal sequences,

• Q1 = {aen:TPa< TP5 V5 G fl} ,

. ft2 = {a G fi1 : ZitsJ < Eies5i ™ G «*} >

• ft3 = {<r G Q2 : E t t i */ (*, *) > E t i ^ (<*, *) V5 G Q2} ,

• 0 4 = { (r e 0 3 : E t i ^ > E*=i ^ V<5 e fi3> •

Theorem 1 7/a = (Si, ? 2 r . . , S:
z) G fi4, £/ien am =(Si, 52, • • •, S:

m) satisfies the EJR,

the NDDOR, and the ITR, form=l,2,...,z.

Proof: Suppose am violates the EJR. Then there exists a tardy job t G T$m and

an on-time job aj G S$m such that

iPt < Pdj V (pt = p$j A t < dj)) A (max(c?._!, rt) + pt < min dt, s9j+1)).

This implies that a new sequence a' — (Si, a2,- • •»&j-i,t, 0j+i,. • •, <rz) of on-time jobs

can be created by replacing job aj with job t. This new sequence has the same number

of on-time job as a, and is therefore optimal. If pt < ps^ then TP$> < TP$, which

contradicts that S G 0,4. If pt > p^, then pt — Paj At < dj, which would imply

TP$> = TPa and Ylies-, * < Ylies-^ which contradicts that a G fi4. Therefore, Sm

must satisfy the EJR.

Now suppose am violates the ITR. Then there exists a job k G J\S$m and j ,

1 < j < m— 1, such that max(r&, c^)+pfc < min(c?fe, sg^.+1). This implies that k can be

scheduled between dj and S^+i without changing the starting times of any of the other

jobs. If k £ {S m + i , . . . , S2} , then the sequence (Si, S 2 , . . . , Sj, &, Sj+i, . . . , Sz) has z+1

on-time jobs, which contradicts the optimality of S. Therefore, k G {am+x,... ,az} .

16

www.manaraa.com

Suppose k = at for some ra + 1 < t < z and let a' = (ai,a2, • • .,cfj,k,aj+i,

. . . , at-i, <?t+i) • • •> ^z)- Then a'has the same number of on-time job as a and is there

fore optimal. Furthermore, TPgi — TP$ and J2ies~, * = Eies- *' ^u* Ylt=i ^ (^'' *) >

E t i ^ (£,*), which contradicts that den4. Therefore, am must satisfy the ITR.

Now suppose am violates the NDDOR. Suppose two consecutive jobs, G~J-\ and &j,

violate the NDDOR (i.e., o,_i > djf\s-$j_i > r ^) . Let a' = (<7i,(72, . . . ,dj-2,<7j,<Tj-i,

0j+i, . . . , GZ) be the schedule obtained by interchanging these two jobs. Then dj-\ >

dj implies efe.^ > d^j which then implies that both jobs will be on time. Further

more, ssj_1 > r%v implies that Gj will satisfy its release date in a'. Therefore, the

interchange creates a new optimal schedule, a' and a contain the same set of jobs and

the machine is idle during precisely the same moments in time, hence TP^ = TP$,

Eiesa,i = Ei659«» and E£i*/(?,*) = Ttiti^t). But YU&i > T,Um,
which contradicts that a £ Q4. Therefore, a™ must satisfy the NNDOR. •

3.2 Memory-based Dominance Rule

This section describes the General Memory Dominance Rule (GMDR), used in the

BB&R algorithm presented in Section 3.3. A proof is provided showing that the

GMDR can be used with the EJR, the NDDOR, and ITR such that there exists an

optimal solution that satisfies all the dominance rules.

Similar to the dominance rules described in Section 3.1, memory based dominance

rules (MBDR) are also used to reduce the search space. Unlike the other dominance

rules, they do not exploit the structure of optimal solutions, but rather compare

partial sequences of on-time jobs and determine whether a particular partial sequence

is guaranteed to lead to a solution that is at least as good as other solutions found

by the other partial sequences. The GMDR is now formally defined.

Definition 3.2.1 General Memory Dominance Rule (GMDR)

17

www.manaraa.com

Let a — (<7i, <72,..., am) and 5 — (Si, <52, • • •, £g) 6e partial sequences of on-time jobs.

Then a dominates 5 if (Fa D F$) A (f̂ < fg) and one of the following holds:

1. m > q

2. (m = q)A (TPa < TPS)

3. (m = q)A (TPa = TPS) A &ieSa i < E i e s , 0

I (m = q) A (TP, = TPS) A (E ^ < = E i e S , i) A (E £ : */ (*, *) > E t i «/ & *))

5. (m = q) A (TPCT = TP,) A (£; e S (, i = E i e s , 0 A (Zti * ' (*, *) = E t i ^ ft *))

A(Er=i^>EL^)

The GMDR suggests that given two partial sequences of on-time jobs a and 5, if

a dominates 5, then it is unnecessary to evaluate full sequences of on-time jobs that

are constructed by scheduling more jobs onto the end of S, and that it is sufficient to

only evaluate full sequences of on-time jobs that are constructed by scheduling more

jobs onto the end of a.

Theorem 2 formally states that the GMDR can be used simultaneously with the

EJR, NDDOR, and the ITR without pruning out all optimal solutions.

Theorem 2 Ifa = (di,(T2,--- ,&z) £ ^4) then aq = (o^o^, . . . ,aq) is not dominated

by any other sequence, for q = 1,2,... ,z.

Proof: Suppose am = (<71; cr2,..., ffm) dominates aq = (dx, er2,..., aq) for some q

such that 1 < q < z. Fa™. D F^q and ?am < rgq imply that the sequence (aq+i,aq+2, • • •,

az) of remaining jobs can be appended to am to obtain a new feasible sequence

a — (<7i, <72,..., cm,aq+i,dq+2, • • •, ?z). The remainder of the proof consists in show

ing that if any of the five conditions in the GMDR hold true, then it would contradict

that a en4.

18

www.manaraa.com

Case 1 m > q. Then a is a feasible sequence that contains more on-time jobs than

a, which contradicts the optimality of a.

Case 2 (m — q) A (TPam < TP$q). Then a is a feasible sequence that contains the

same number of on-time jobs as a, hence a is an optimal sequence. This also holds

true in all the following cases. TPam < TP$q implies TPa < TP^,which contradicts

that a € O4.

Case 3 (m = q) A (TP^ = TPa<!) A (EiesCTm
 i < £ i e s 5 , *) • Then TP°m = TP*>

implies TPa = TPS. Furthermore, Eies,,™ * < E i Gs 3 , * implies EiGsCT * < £ i e s s *»

which contradicts that a £ ft4.

Case 4 (m = 9) A (TPam = Ti%,) A (Ei6sCTm < = E i eSf f9 0 A (Yt1tl (am,t) >

E?=i^(^>*))- ^Jien Tpa = TPd and J2iesJ = Lies**- Furthermore, ^1^1

(am, t) > Yltli H @q, t) implies E £ i tl (a, t) > E?=i f I (^ *) > which contradicts that

den4.

Case 5 (m = q)A {TPam = TP&g) A (z^sam i = Z>esffq i) A

(£ £ i </ (ffm, i) = E t i */ (^,«)) A (E™ i ^ > E?=i ^) • ^ e n TPCT = TPS,

UZiesJ = Ei658«. a n d E i i ^ ^ , *) = £ £ i *'(*,*)• i ^ e r m o r ^ E ™ : K m >

Ei=i ^ implies E H i ^ i > Ei=i ^ which contradicts that a £ Q4. •

3.3 Branch, Bound, and Remember Algorithm

This section introduces the BB&R algorithm for solving the l | r j | E ^ scheduling

problem. Section 3.3.1 describes the bounding scheme, including a dynamic pro

gramming algorithm that produces tighter upper bounds compared to other known

heuristics. Section 3.3.2 describes the branching scheme with two different explo

ration strategies and illustrates how the dominance rules described in Sections 3.1

19

www.manaraa.com

and 3.2 are used. Pseudo-codes for the BB&R algorithm are also provided in Section

3.3.2. In addition, Section 3.3.3 also describes an extension to the BB&R algorithm

that leads to further computational speed up.

The B&B algorithm presented in this chapter incorporates memory-based dom

inance properties to prune a subproblem if it is dominated by another subproblem

that has already been generated. To implement this, it is necessary to store (remem

ber) the subproblems that have already been generated (and hence the name Branch,

Bound, and Remember).

Note that the technique of memorizing previously visited nodes has been previ

ously studied. In the scheduling domain, Jouglet et al. [50] have also used memory

to record "no-good recording" and "better sequence" to prune dominated solutions

in the solution space. Peridy et al. [86] also introduces the use of short term schedul

ing memory for solving the l|rj | YlwiUi scheduling problem. Dynamic programming

techniques [10, 84] share a similar concept. Morin and Marsten [80] tried to combine

dynamic programming and B&B strategies to improve computational efficiency of

dynamic programming. Heuristic searches [105, 106] have been used to solve large

planning problems. These graph-based searches store previously visited nodes in the

search tree to avoid revisiting previously explored paths, similar to the memory-based

dominance rules used in the BB&R algorithm.

3.3.1 Bounding Scheme

This section provides an overview of the Minimizing Late Job (MLJ) heuristic [25],

a dynamic programming algorithm [58], and an extended dynamic programming al

gorithm based on Kise et al. [58]. These heuristics are used to calculate lower and

upper bounds for the number of late jobs. These bounds provide an estimate on the

quality of a branch. The efficiency and the quality of the lower and upper bounds

can lead to significant performance improvements to the overall algorithm.

20

www.manaraa.com

The bounding scheme works as follows. Initially, prior to any branching, an upper

bound is computed based on the MLJ heuristic and the extended dynamic program

ming algorithm; the minimum of these two bounds is retained. As the branching

process proceeds with additional jobs being scheduled, lower bounds are computed

based on the remaining free jobs, using a dynamic programming algorithm with re

laxed release times and due-dates. If the lower and upper bounds are tight, then the

branch is pruned.

Kise et al. [58] propose a dynamic programming algorithm for solving a special

case of the l|r;| J^t/j scheduling problem, where the jobs are similarly ordered (i.e.,

Ti < Vj =$> di < dj). This dynamic programming algorithm is incorporated into the

BB&R algorithm to generate lower bounds. Since the instances solved in this chapter

are generally not similarly ordered, the jobs' release times and due-dates are relaxed

to generate the lower bound. Two separate lower bounds are computed based on

either relaxing the release times or relaxing the due-dates, where the maximum of the

two lower bounds is retained.

An extended dynamic programming algorithm (EDP) based on Kise et al. [58]

is used to compute an upper bound. The pseudo-code illustrated in Figure 3.1 out

lines the new EDP algorithm. Let Jobs be the set of free jobs sorted in due-date

order. The function REPLACE(a,k), (see Figure 3.1), returns the shortest feasible

schedule by considering all schedules that replace a job in a with job k. If no feasible

schedule exists, the function REPLACE(a,k) returns a. The function INSERT(a,k)

returns the shortest feasible schedule by considering all schedules that insert job k

into a. If no feasible schedule exists, the function INSERT(a, k) returns a. The array

max_n_jobs(fc) stores the maximum number of jobs that can be scheduled from the

subset of jobs, {Jo6s[l],..., Jobs[k]}. The matrix C(k,m) stores the earliest comple

tion time for scheduling exactly m jobs among {Jo6s[l],. . . , Jobs[k]} and Seq(m, k)

is the partial sequence of on-time jobs associated with C(k,m).

21

www.manaraa.com

The EDP algorithm follows the same basic recursion as in Kise et al. [58]. Let

Compk:m be the best completion time for a partial sequence with m jobs, where

job k may (or may not) be scheduled. The recursion in the dynamic programming

algorithm in Kise et al. [58] is Compk,m — min(Corapfc_i)m,max(Compfc-i,m-i,7,fc) +

Pk)- In order to compute Compk,m, the dynamic programming algorithm in Kise

et al. [58] considers two types of sequences; sequences of length m where job k

is not scheduled, and the sequence where job k is appended to a sequence with

length m — 1. Moreover, the EDP algorithm used in the BB&R algorithm considers

two additional type of sequences; partial sequences of length m — 1 where job k

is inserted, and also partial sequences of length m where job k replaces another job.

These two additional types of sequences are generated by the functions REPLACE and

INSERT (see Figure 3.1). By design, the EDP algorithm considers additional possible

schedules, and frequently generates tighter upper bounds than the MLJ heuristics.

Section 3.4 reports computational results comparing the EDP with the MLJ heuristic

described in this section.

Dauzere-Peres [25] introduced the MLJ heuristic, which is constructive and con

sists of attempting to schedule new jobs with release dates earlier than the current

completion time of the last scheduled job. Jobs are also chosen in a way that mini

mizes the completion time of the last scheduled job. The MLJ heuristic is also used

to compute the upper bound for the number of late jobs. This heuristic runs in 0(n2)

time.

3.3.2 Branching and Dominance Scheme

This section describes how all the dominance rules are used in conjunction with the

branching scheme in the BB&R algorithm. At each branching stage in the search

tree, the sequence of on-time jobs is checked for consistency with the dominance

rules. The BB&R algorithm using the DBFS exploration strategy is described. The

22

www.manaraa.com

EDP(Jo6s, R,D,P)
R, D, P are the release times, due-dates, and processing times respectively.
max_n_jobs = {0 , . . . , 0}, C = {{oo,... , oo} , . . . , {oo,. . . , oo}}
max_n_jobs[l] = 1
C(l, 1) = R(Jobs[l]) 4- P{Jobs[l\)
Seq(l, 1) = Jobs[l]
for k — 2 to the number of Jobs do

max_n_jobs[A;] = max_n_jobs[A;] + 1
for m = max_n_jobs[A;] —»• 2 do

if C(k — 1, m) < oo then
temp_seq = REPLACE(S'eg'(m,m), Jobs[k])

else
temp_seq = oo

end if
temp_seq2 = INSERT(Seg(ra - 1, m - 1), Jobs[k])
if Complete_time(temp_seq) < Complete_time(temp_seq2) then

C(k, m) = Complete_time(temp_seq)
if Complete_time(temp_seq) < oo then

Seq(m, m) = temp_seq
end if

else
C(k, m) — Complete_time(temp_seq2)
Seq(m, m) = temp_seq2

end if
end for
if max_n_jobs[fc] > 0 then

if C(k - 1,1) < max(0, R(Jobs[k]) + P(Jobs[k}) then
C(Jfc,l) = C (J b - l , l)

else
C(k, 1) = max(0, R(Jobs[k}) + P(Jobs[k})
Seq(l, 1) = Jobs[k)

end if
end if
max_n_jobs[A;] = max{j : C(k,j) < oo}

end for

Figure 3.1: Upper Bound Extended Dynamic Programming Algorithm for the
l|r«l S Ui Scheduling Problem

23

www.manaraa.com

pseudo-codes for the BB&R algorithm is also presented.

Given a particular state (a, F<j,Ta,Ea), a new state is explored by adding a new

job to the partial sequence <r, (i.e., a new sequence (<7i, CT2, . . . , crm, fa) where m is

the length of a and fa € Fa). The new state is denoted by (a',F^,T^,E'a). The

dominance rules are used in two ways: to filter Fa to find the set of jobs that are free

and satisfy the dominance rules; and once the new partial sequence is scheduled, to

reduce the number of further branching needed from that state.

The NDDOR and the ITR are initially used to filter Fa. Only jobs that are in

Fa and satisfy the NDDOR and the ITR are considered for branching. If no such

jobs can be found, then the current branch is pruned. Scheduling a new job modifies

the previous Fa, Ta, and Ea, where Tc is modified by checking each job in Fa for

tardiness, and Ea is computed based on the EJR, (see Section 3.2). The new set of

tardy jobs and early jobs are then checked for consistency with the EJR. If any of

the late jobs becomes an early job, or if a tardy job does not satisfy the EJR, then

the branch is pruned. Note that in Baptiste et al. [5], the dominance rule is used

as a preprocessor to identify unscheduled jobs to be considered for branching, which

must be either on-time or late. The EJR embedded in the BB&R algorithm is used

to actively prune further branching.

If the new state (after branching) satisfies the EJR, the NDDOR, and the ITR,

then the GMDR is applied. The set of free jobs F'a is used as the hash key to find

the corresponding entry in the hash table. If this entry in the hash table is empty,

then the current state is stored; otherwise, the GMDR is used to compare the current

state and the previously stored state (s). If the new state dominates the previously

stored state(s), then the new state replaces the old state(s) in the hash table. If any

old state stored in the hash table dominates the new state, then the current branch

is pruned.

The combination of the EJR, the NDDOR, and the ITR, with the addition of the

24

www.manaraa.com

GMDR significantly reduces the search space for the BB&R algorithm. Section 3.2

provided the proof showing that combining all the dominance rules will not eliminate

all optimal solutions (i.e., the BB&R algorithm is exact). The pseudo codes for the

BB&R algorithm with the DBFS exploration strategies are now presented.

The DBFS exploration strategy is designed to find an optimal solution earlier

than Depth-first search. The DBFS is a hybrid between DFS and Best-first search

(BFS). In DBFS, states are explored based on the length of the sequence of on-time

jobs and a fresi-measure, a heuristic function that evaluates the potential of a state

leading to an optimal solution. The DBFS explores states by sequentially considering

states with longer and longer sequence of on-time jobs. Let level 1 states be all states

with a sequence of on-time jobs of length 1, and let level 2 states be all states with a

sequence of on time jobs of length 2, and so forth. The DBFS starts by choosing a

state at level 1 to explore. It then chooses a state at level 2 to explore and continue

until it reaches the deepest level, at which time it will return to level 1 and repeat.

When the DBFS chooses a node at level k, it chooses the one with the highest best-

measure value. The children of the chosen state are generated and added to level

k + 1. An outline of the DBFS exploration strategy is given in Figure 3.2. Note that

there may be iterations in the search process where some levels may not have any

unexplored states. In such cases, no new states are explored for that iteration, and

no new states are added to the next level. The pseudo-code for the BB&R algorithm

with the DBFS (BB&R-DBFS) implementation is given in Figure 3.3.

In the BB&R-DBFS pseudo-code, a heap structure is needed to store states for

each level of the search tree. When a state is expanded by scheduling each of the jobs

in PFa, each new state is verified to satisfy the EJR and the GMDR prior to being

added into the next level heap. Note that there may exist states in the heap that

are dominated by the GMDR after they have been added to the heap. For example

state B may dominate state A by GMDR, but the predecessor of state A may have

25

www.manaraa.com

Distributed Best First Search
Initialize level 0 by storing the root node
while unexplored states exist do

for each level i, 0 to maximum depth do
Expand the best node in level i
Store all the children of the best node in level i + 1

end for
end while

Figure 3.2: Outline of DBFS

been explored before the predecessor of state B, which results in adding state A to

the heap before state B. A simple dominance bit (i.e., an indicator that indicates

a state is dominated if set), can be used to keep track of such states to avoid extra

exploration of state A. In addition, BB&R-DBFS uses a Best-Measure heuristic. Two

Best_Measure heuristics are considered in this chapter. The first, denoted by DD is

based on due-date order. That is, if a is a sequence of on-time jobs in the current

state with m jobs, then Best = — 1 * dam. This Best_Measure favors states with

sequences of on-time jobs with earlier due-dates. The second, denoted by RP, is more

sophisticated and takes earlier release times as well as the processing times of the

free jobs into consideration. Define Wj = di — max(rcr,rj) for i G Fa to be the time

window for each job i. The Best_Measure is defined as Best = YlieF Wi/Pi- This

second Best-Measure prefers schedules with smaller value for ra as well as schedules

with shorter free jobs in longer time windows. Note that BB&R-DFS also has an

implicit Best_Measure, which is based on exploring PFa in due-date order.

3.3.3 Enhancements to the BB&R Algorithm

This section describes an enhancement to the BB&R algorithm presented above.

The look-ahead NDDOR (LA-NDDOR) is based on the NDDOR. Suppose that

job i € PFa is appended to a to obtain a' — (<7i,... ,am, <rm+i) where crm+i = i.

26

www.manaraa.com

B B & R - D B F S (< T , Fa, Ta, E„, fa, UB, hash_table, h e a p (l , . . . , size(FCT))

LB = Lower _Bound(Fcr,fcr)
if LB > UB then

return
end if
Initialize heap(l)
while heap is not empty do

for i = l->UB do
cur_state = heap(i).pop
curib — Lower_Bound(cur_state)
if cur_lb + size(cur_state.TCT) < UB then

PFa = NDDOR(curjstate.Fa) and iTR((cur_state.FCT)
for each j G PFa do

new_state.cr = cur_state.cr 4- j
update new_state from cur_state
new_best = Best_measure(new_state)
Violated_EJR = EJR(new_state)
Violated_GMDR = GMDR(new_state)
if not Violated_EJR A not Violated.GMDR then

Store(new_state) in hash-table
heap(i+l).add(new_state, new_best)

end if
end for

end if
end for

end while

Figure 3.3: BB&R-DBFS Pseudo-Code for the l|r*| J2ui Scheduling Problem

Let k = min{/x : h G Fa \ {crm+1}}. If am+i > k and sam+1 > rk, then k cannot

be scheduled in position m + 2 because it would violate the NDDOR. Furthermore,

it cannot be scheduled in any later position because it will violate the EJR. To see

this, let a" = (ai,...,am, am+i,... ,aq). aq > k because aq € Fa \ {crm+i} and

k — min{/i : h £ Fa\ {am+i}}. In addition, r^ < sam+1 < sc7q, therefore, the NDDOR

will be violated if k is scheduled in position q + 1. Consequently, the NDDOR will

prevent job k from being scheduled on time in any super-sequence of a'. Thus job

k should be added to Ta> instead of Fa>. This test can be repeated for each job in

27

www.manaraa.com

LA-NDDOR(Fa, a = (au ...
Sort Fa in Due-Date order, F' = {},V = Ta

for ke Fa\ {<7m+i} do
if cCTm+1 +pk>dk then

T' = T'\J{k}
else

if F' = {} and (am+1 > k A sffm+1 > rfc) then
T' = T'\J{k}

else

end if
end if

end for

Figure 3.4: LA-NDDOR Pseudo-Code for the l|r;| £ [/; Scheduling Problem

i7^ \ {am + i} , in due-date order, until one is found that can be scheduled in position

m + 2.

The LA-NDDOR can enhance the algorithms in two ways. First it produces a

tighter lower bound earlier in the branching process, and second, if any of such jobs

become early, then the entire branch will be pruned by the EJR. Figure 3.4 provides

the pseudo-code for this enhancement.

The discussion above yields the following theorem which states that the LA-

NDDOR may be used in the BB&R algorithm in conjunction with the other domi

nance rules such that the BB&R algorithm remains exact.

Theorem 3 The Branch, Bound, and Remember Algorithm using the look-ahead ND-

DOR is an exact algorithm.

3.4 Computational Results

This section reports computational results for the BB&R-DBFS algorithm described

in Section 3.3. The computational results of the DBFS exploration strategy are

28

www.manaraa.com

compared against the computational results of the DFS and the BFS exploration

strategies. Computational results for using the two different best-measures as well as

the LA-NDDOR are also reported. This section also reports computational results

for comparing the EDP and ML J heuristics described in Section 3.3.1.

The effectiveness of the BB&R algorithm is evaluated over 7,200 randomly gen

erated test instances. These test instances were generated using the same gener

ation scheme described in Baptiste et al. [5], based on four parameters: number

of jobs, processing time range, maximum slack margins, and machine load, de

noted as (n,\pmin,pmax],slackmax,load). The slack margin is defined for each job

as di — Ti — pi. The machine load is denned to be the ratio between the sum of the

job's processing times and the difference of the maximum due-date and the mini

mum release time. The parameters used for generating the test instances are n =

{80,100,..., 300}, [pmi„,pmax] = {[25, 75], [0,100]}, slackmax = {50,100,... ,500},

and load = {0.5,0.8,1.1,1.4,1.7,2.0}. For each combination of parameter settings,

five random instances are generated for a total of 7,200 instances. The parameters

used in generating the test instances in this chapter are identical to the parameters

used in generating the instances in Baptiste et al. [6] and Dauzere-Peres and Sevaux

[27]. The experiments in this chapter were executed on a 3 GHz Pentium D PC.

Several variations of the BB&R algorithm are investigated. The DBFS exploration

strategy is compared with the DFS and the BFS exploration strategies. Two different

6es£-measures, described in Section 3.3.2, are also tested in conjunction with the

DBFS exploration strategy. These two variations are denoted as BB&R-DBFS-DD

and BB&R-DBFS-RP. The DD best-measure favors jobs with earlier due-dates, while

the RP frest-measure favors jobs with earlier release times and shorter processing

times.

Table 3.1 reports the average and maximum running time for the BB&R-DBFS-

DD and BB&R-DBFS-RP algorithm. The test set is organized by n—pmin—pmax, with

29

www.manaraa.com

each instance in the test set restricted to a one hour total processing time limit. Both

variations of the BB&R-DBFS were able to solve all instances to optimality. For

some of the larger instances, BB&R-DBFS-DD had significantly longer maximum

running time compared to BB&R-DBFS-RP. The BB&R-DBFS-RP was able to solve

all instances in under fifteen minutes, with the exception of the 260 — 0 — 100 and

300 — 0 — 100 instances. For the remainder of the chapter, the RP fcesi-measure is

used for evaluting the variations and extension of the BB&R algorithm.

Table 3.1: 1 ^ 1 ^ ^ BB&R-DBFS Algorithms: Average amd Maximum CPU Time
(sec.)

BB&R-DBFS-DD BB&R-DBFS-RP
Pmin Pm&x

80-0-100
80-25-75
100-0-100
100-25-75
120-0-100
120-25-75
140-0-100
140-25-75
160-0-100
160-25-75
180-0-100
180-25-75
200-0-100
200-25-75
220-0-100
220-25-75
240-0-100
240-25-75
260-0-100
260-25-75
280-0-100
280-25-75
300-0-100
300-25-75

Avg.
0.5
0.4
1.9
0.5
0.9
0.7
1.2
1.0
1.9
1.3
2.6
1.9
5.1
3.3
5.5
4.0
12.4
5.9
15.8
7.8
26.1
13.1
26.4
19.6

Max
5.4
1.8

393.0
4.6
15.0
7.1
10.7
20.3
33.6
10.9
109.4
19.0

237.6
149.1
145.7
38.6
515.3
62.4

447.2
127.2
734.3
284.7
510.5
439.7

Avg.
0.6
0.4
1.6
0.5
1.3
0.7
1.7
0.8
2.7
1.0
3.5
1.4
5.5
2.3
8.3
2.7
10.7
3.7
18.2
5.1
26.5
7.6

45.7
11.5

Max
7.6
1.2

281.8
2.7

22.6
4.8

252.2
10.6
73.0
9.2

135.7
11.8

248.5
112.3
496.6
32.5
414.0
38.4
959.6
49.8
633.5
162.5

2924.3
234.5

Tables 3.2 summarizes the results of the test set with the LA-NDDOR extension.

Table 3.2 reports the average running time for the BB&R algorithm using the RP

www.manaraa.com

Table 3.2: l|r<|X) UJ BB&R Algorithms: Average CPU Time (sec.) with LA-NDDOR
" Pmin JPmax

80-0-100
80-25-75
100-0-100
100-25-75
120-0-100
120-25-75
140-0-100
140-25-75
160-0-100
160-25-75
180-0-100
180-25-75
200-0-100
200-25-75
220-0-100
220-25-75
240-0-100
240-25-75
260-0-100
260-25-75
280-0-100
280-25-75
300-0-100
300-25-75

BB&R-DFS
0.5
0.4
1.5
0.5
0.9
0.8
1.4
1.4
2.4
1.4
4.1
2.8
9.6
12.9
13.3
9.5

52.4 (2)
15.2

69.6 (1)
32.8

125.4 (5)
72.7 (2)
147.5 (5)
123.2 (2)

BB&R-BFS-RP
0.9
0.5
0.9
0.6
2.5
0.9
1.6
1.1
2.1
1.2
2.5
1.6
4.7
1.9
6.1
2.3
5.7
2.7
7.3
3.3
10.3
4.2
14.0
5.1

BB&R-DBFS-RP
0.4
0.4
0.6
0.4
0.6
0.5
0.8
0.7
1.1
0.8
1.3
1.0
2.2
1.5
2.6
1.8
3.9
2.4
5.5
3.2
9.1
4.7
11.5
6.5

best measure with different exploration strategies. The DBFS exploration strategy

is compared with the DFS and the BFS exploration strategies. Table 3.3 shows the

standard deviation of the running time of BB&R-BFS-RP and BB&R-DBFS-RP.

The BB&R-DBFS-RP and the BB&R-BFS-RP were able to solve all instances to

optimality; however, BB&R-DFS was unable to solve 36 of the 7,200 instances. The

number in parentheses associated with some of the entries in Table 3.2 reports the

number of instances that were incomplete. The average running times reported in

Table 3.2 include those instances that were incomplete.

By using the LA-NDDOR, for the larger instances, BB&R-DBFS-RP was an order

of magnitude faster on average then BB&R-DFS. All instances were solved to opti-

31

www.manaraa.com

mality in less than eight minutes. On average, BB&R-DBFS-RP also out performs

BB&R-BFS-RP, moreover, Table 3.3 shows that for most of the instances, BB&R-

DBFS-RP has a standard deviation that is less than half of the standard deviation of

BB&R-BFS-RP. By design, the LA-NDDOR extension was able to reduce the number

of branches in the BB&R algorithm.

Table 3.3: l\ri\J2Ui BB&R Algorithms: Standard Deviation in CPU Time (sec.)
with LA-NDDOR

n - pmin - JEW BB&R-BFS-RP BB&R-DBFS-RP
80-0-100
80-25-75
100-0-100
100-25-75
120-0-100
120-25-75
140-0-100
140-25-75
160-0-100
160-25-75
180-0-100
180-25-75
200-0-100
200-25-75
220-0-100
220-25-75
240-0-100
240-25-75
260-0-100
260-25-75
280-0-100
280-25-75
300-0-100
300-25-75

2.6
0.5
2.7
0.6
16.7
1.7
4.9
2.5
5.3
1.8
7.6
2.7
25.3
3.9
26.1
4.5
21.8
4.4
41.0
5.6
68.8
8.7
64.9
8.5

0.2
0.1
2.3
0.1
0.5
0.3
0.6
0.5
1.2
0.5
1.6
0.9
6.1
3.4
3.9
2.1
8.0
2.8
9.7
3.9
22.1
7.9

34.0
10.9

M'Hallah and Bulfin [76] report the best computational results to date for solving

the l\ri\J2Ui scheduling problem. On average, their algorithm took 193.4 seconds

for solving instances with size n = 200 on a 1 Ghz Pentium IV PC. The BB&R-BFS-

RP algorithm on average took 5.7 seconds, while the BB&R-DBFS-RP algorithm on

32

www.manaraa.com

average took 1.9 seconds. Although the experiments in these papers were executed

on different platforms, the average running time for the two variations of the BB&R

algorithm were two orders of magnitude faster, which clearly dominates the results

in M'Hallah and Bulfin (2007).

Table 3.4: 1 ^ 1 ^ ^ BB&R-DBFS Algorithms: Average CPU Time (sec.) with
Different Dominance Rules

Pmin Pmax

80-0-100
80-25-75
100-0-100
100-25-75
120-0-100
120-25-75
140-0-100
140-25-75
160-0-100
160-25-75
180-0-100
180-25-75
200-0-100
200-25-75
220-0-100
220-25-75
240-0-100
240-25-75
260-0-100
260-25-75
280-0-100
280-25-75
300-0-100
300-25-75

w/o EJR
0.5
0.5
0.8
0.6
0.8
0.8
1.1
1.0
1.6
1.2
2.1
1.7
3.9
3.0
4.5
3.5
7.5
4.9
10.5
6.5
18.3
10.1
24.5
14.7

w/o IRT
0.5
0.5
1.1
0.6
1.4
1.0
2.3
1.6
3.7
2.3
5.5
3.4
10.1
5.9
13.4
7.9
20.9
11.4
30.6
15.6
49.4
22.7
61.8
30.9

w/o NDDOR
0.5
0.5
2.3
0.5
1.1
0.7
1.4
1.0
2.4
1.1
3.5
1.7
7.6
2.8
7.6
3.2
14.8
4.5
24.3
6.2

45.7
9.6

41.8
14.8

w/o GMD]
13.6 (7)
12.3 (2)

67.6 (27)
42.0 (15)
84.3 (58)
64.5 (41)

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Table 3.4 and 3.5 reports the average and maximum running time for the BB&R-

DBFS algorithm with RP best measure when each of the dominance rules described

in Section 3.1 and 3.2 is removed individually. The number in parenthesis in Table

3.4 reports the number of unsolved instances. These two tables provide an insight

to the relative impact of each of the dominance rules. The GMDR has the largest

33

www.manaraa.com

Table 3.5: l ^ l ^ t / ; BB&R-DBFS Algorithms: Maximum CPU Time (sec.) with
Different Dominance Rules

n-pmm-pmax w/o EJR w/o IRT w/o NDDOR w/oGMDR
80-0-100
80-25-75
100-0-100
100-25-75
120-0-100
120-25-75
140-0-100
140-25-75
160-0-100
160-25-75
180-0-100
180-25-75
200-0-100
200-25-75
220-0-100
220-25-75
240-0-100
240-25-75
260-0-100
260-25-75
280-0-100
280-25-75
300-0-100
300-25-75

6.4
1.2

75.5
3.9
9.4
7.8
10.4
13.5
26.8
8.5
25.8
14.1

161.5
177.0
65.6
43.8
309.7
49.0
156.0
67.0
397.6
195.6
1787.1
299.2

4.6
1.3

78.7
2.7
9.6
6.0

21.7
16.9
48.9
12.1
56.2
23.7
283.7
167.7
156.8
66.8
474.7
83.3

349.6
118.4
1027.1
291.0
1813.5
265.8

6.1
1.4

590.8
4.6
27.6
6.5

21.6
11.1
45.5
15.0
153.3
16.1

457.5
146.9
190.6
43.7
905.6
53.5

957.2
70.1

1563.8
185.9
1126.4
405.6

849.6
1653.1
1834.6
2755.4
1784.5
2096.0

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

impact on the performance of the BB&R-DBFS algorithm. Without GMDR, the

algorithm has difficulty solving all the test instances. At size n — 80,100,120, it was

only able to solve 98.5%, 93%, and 83.5% of the test instances respectively. By using

the GMDR, the BB&R-DBFS algorithm has over two orders of magnitude speed up

in computational time over the computational time when the GMDR is not in use.

Despite the overwhelming impact of the GMDR, the other dominance rules also

have a significant impact on the performance of the BB&R-DBFS algorithm as well.

On average, the BB&R-DBFS algorithm takes two times longer when the EJR or

the NDDOR is not used. For the larger instances, the BB&R-DBFS algorithm takes

34

www.manaraa.com

up to five times longer when ITR is not used. Table 3.5 shows that for the difficult

instances, each of the individual dominance rules can have a significant impact on

the degradation in the performances of the BB&R-DBFS algorithm. Table 3.4 and

3.5 shows that on average, the ITR rule has a stronger impact than the EJR and

NDDOR on the performances of the BB&R-DBFS algorithm. However, in the worst

cases, Table 3.5 shows that both NDDOR and ITR have a significant impact on the

performances of the BB&R-DBFS algorithm.

In addition to the computational results for the BB&R algorithm, the test set was

also used to assess the effectiveness of the EDP described in Section 3.3.1. The column

labeled EDP in Table 3.6 reports the number of instances for which EDP provided

a tighter upper bound than MLH. The column labeled ML J reports the number of

instances for which MLJ provided a tighter upper bound than EDP. Moreover, the

column labeled EDP Optimal in Table 3.6 also reports the number of times the upper

bound estimated by the EDP is equal to the optimal number of tardy jobs, and also

the average gap between the optimal number of tardy jobs and the estimated upper

bound.

The EDP heuristics clearly outperformed the MLJ heuristic. The EDP was able

to consistently find tighter upper bounds. For more than half of the smaller instances,

EDP was able to find the optimal solution. The tighter upper bound also contributed

to the overall effectiveness of the BB&R algorithm.

3.5 Conclusion

This chapter presents the BB&R algorithm using the DBFS exploration strategy to

solve the l|r,| "Y^Ui scheduling problem. The chapter provides enhancements to two

previously known dominance rules (reported by Baptiste et al. [6] and Dauzere-Peres

and Sevaux [27], respectively) and describes a new memory-based dominance rule.

35

www.manaraa.com

Table 3.6: EDP vs. ML J Upper Bounds Comparison for the l | r , |^C/j Scheduling
Problem

Pmin Pmax

80-0-100
80-25-75
100-0-100
100-25-75
120-0-100
120-25-75
140-0-100
140-25-75
160-0-100
160-25-75
180-0-100
180-25-75
200-0-100
200-25-75
220-0-100
220-25-75
240-0-100
240-25-75
260-0-100
260-25-75
280-0-100
280-25-75
300-0-100
300-25-75

E D P

228
174
236
194
251
218
270
221
280
242
271
247
282
257
282
259
286
264
290
264
292
275
293
269

MLJ

8
7
9
10
7
10
7
7
4
7
6
4
1
6
3
6
4
3
1
11
2
4
4
4

E D P Optimal

190
186
162
174
133
149
126
148
114
118
103
111
82
100
85
88
88
87
73
77
68
64
66
71

Avg. G
0.41
0.41
0.56
0.45
0.77
0.57
0.78
0.64
0.93
0.8
1.06
0.92
1.22

0.99
1.29
1.17
1.33
1.21
1.49
1.35
1.65
1.5
1.88
1.57

This chapter describes how these dominance rules can be embedded in a new B&B

algorithm using an effective DBFS exploration strategy. The resulting new algorithm,

BB&R, is proven to be exact. The BB&R-DBFS solved all 7,200 randomly generated

test instances to optimality, outperforming the current best known exact algorithms.

Furthermore, the LA-NDDOR extension provided additional computational speed

up. The running time for the LA-NDDOR extension in conjunction with the DBFS

exploration strategy is an order of magnitude faster than the BB&R-DFS variation.

The ITR rule and the NDDOR have the most impact on the performances of the

BB&R-DBFS algorithm.

36

www.manaraa.com

Like all B&B algorithms, improving the lower and upper bounds reduces its exe

cution time. An extended dynamic programming algorithm is also presented and is

shown to significantly improve the upper bound estimation. The combination of all

the dominance rules, new exploration strategy, and improved upper bound computa

tion demonstrate that the BB&R algorithm is very efficient.

The BB&R algorithm has been successfully applied to the l | r j |^ f / j scheduling

problem. A natural extension to this work is to investigate other applications. One

immediate extension of the l|rj| Yl Ui scheduling problem is to investigate the total

tardiness scheduling problem, l|rj|T [51]. Chapter 4 introduces a BB&R algorithm

for the total tardiness scheduling problem and shows its effectiveness. There are

also practical military applications of the l|r$| ^ Uj scheduling problem that involve

limited, highly valued assets that process certain tasks within a given time window

(e.g., a surveillance satellite that must photograph as many locations as possible

within its overpass time window.) Another military application of a limited, high

value asset is the Air Force Airborne laser (ABL) system, which employs a 100 ton

system of chemical lasers encased within a Boeing 747 aircraft designed for theater

ballistic missile (TBM) defense. In particular, the ABL system is designed to detect

the launch of a TBM, track its trajectory, and then destroy the missile using a high

powered (megawatt class) laser (which is achieved by heating the TBM's own fuel

supply until the fuel explodes and destroys the missile.) Therefore, once the TBM's

boost phase is complete, the ABL system is no longer effective. The monetary cost and

critical military mission of the ABL system makes its optimal utilization a strategic

military priority.

37

www.manaraa.com

Chapter 4

The l | r^ |^t^ Scheduling Problem

Chapter 3 introduced a modified B&B algorithm, called the BB&R algorithm, that

uses the Distributed Best First Search (DBFS) exploration strategy, which is a hybrid

between Best-First Search (BFS) and Depth-First Search (DFS) [91]. The DBFS ex

ploration strategy was incorporated with the BB&R algorithm to solve the l |r, | ^jT, Ui

scheduling problem. In particular, the algorithm was able to solve problem instances

with up to 300 jobs, outperforming the best known algorithms reported in the lit

erature [27, 6, 76]. Memory-based dominance rules, that store (i.e., remember) sub-

problems that have already been generated (and hence, the name Branch, Bound, and

Remember) are also incorporated into the BB&R algorithm. Lastly, the BB&R al

gorithm with DBFS offers several advantages over the more traditional DFS or BFS.

In particular, DBFS is able to find optimal solutions earlier in the search process,

and by design, it explores fewer sub-problems that will eventually be dominated by

another sub-problem, and hence, reducing the number of branches.

The BB&R algorithm with the DBFS exploration strategy is used in this chap

ter to solve the l | r j | ^ £ j scheduling problem. A modified dynamic programming

algorithm is also presented to efficiently compute tighter bounds. Several previously

known dominance rules proposed by Jouglet et al. [50], Baptiste et al. [4] and Chu

[16] are also incorporated into the BB&R algorithm.

This chapter is organized as follows. Section 4.1 describes the l | r j | ^U scheduling

problem, and the notation used in this chapter. Section 4.2 describes the dominance

rules used for the l |r , |]Pij scheduling problem, as well as a proof showing that the

38

www.manaraa.com

combination of using all these dominance rules preserves exactness. Section 4.3 de

scribes the bounding schemes incorporated in the BB&R algorithm, including a more

efficient implementation of a modified dynamic programming algorithm for comput

ing the lower bounds. Section 4.4 provides an overview of the BB&R algorithm.

Computational results are reported in Section 4.5, followed by conclusions in Section

4.6.

4.1 Background and Notations

The scheduling problem addressed in this chapter is a single machine scheduling prob

lem, denoted as l|rj|]T U [51]. The problem consists of a set of jobs J = {1,2, . . . , n}

to be scheduled in sequence, where associated with each job is a release time rj, a

processing time pi, and a due-date di, for i = 1,2,... , n, where all parameters are

positive integers. A job cannot be started before its release date. Tardiness of a job

i € J is defined as £* = max(0, q — di), where q is the completion time of job i. The

objective of the l|r;| Y U scheduling problem is to minimize the total tardiness J2 U.

Rinnooy Kan [51] proves this problem to be AP-hard in the strong sense.

A well-studied variation of the 1 |rj| Y2 U scheduling problem is the 111 Yl U schedul

ing problem, where all jobs have equal release dates. The 1|| Y U is & l s o known to be

A^P-hard [31]. Several dominance rules for the equal release date problem have been

proposed in the literature [34, 96]. Exact algorithms such as dynamic programming

algorithms and B&B algorithms have also been proposed by Lawler [65], Potts and

Van Wassenhove [88], Szwarc et al. [96], and Chang et al. [14].

The l | r j | ^ i j scheduling problem considered in this chapter has received less

research attention. Chu and Portmann [17] and Chu [16] propose sufficient conditions

for local optimality, and develop B&B algorithms in conjunction with dominance rules

for solving this problem. The best known B&B algorithm is reported by Baptiste et

39

www.manaraa.com

al. [4] and Jouglet et al. [50], where the algorithm was able to solve problems with

up to 50 jobs (for the hardest instances) and was tested with up to 500 jobs (for the

easiest instances).

The following notation and assumptions are used in the remainder of the chapter.

Jobs are assumed to be sorted by earliest due-date order, and ties are broken based

on the release t ime followed by the processing time (i.e., i < j => di < dj V (di —

dj A 7-j < Tj) V (di = dj Ari — rj Api < pj). Let a = (cri,<T2, • • •,0"m) be a sequence of

scheduled jobs, where Oi e J for i = 1 ,2 , . . . m. For a set of jobs J' C J , let

• r(J') =mmjej>rj,

• P(J') = I2j(:j>Pj,

• d(J') — maxje<// dj.

Let

• ca = c(a) denote the completion time of the sequence of scheduled jobs a,

• cai denote the completion time of job u, (define cCTo = 0),

• sai denote the star t t ime of job Oi (define sCTm+1 = cc),

• Fa = F(a) denote the set of unscheduled (free) jobs,

• Ta = T(a) = XLeo- tj denote the total tardiness of the jobs in a,

• ra — max{co-, m i m ^ r;} denote the earliest s tar t t ime of the free jobs,

• Tjk{f) = max(0,max(rj,f)+Pj —dj) + max(0,max(max(rj,f)+pj,rfc)+Pfe _<^fc)

denote the tardiness of job j and job k when scheduling job j immediately before

job A; given tha t the machine becomes available at t ime f,

40

www.manaraa.com

• Cjk(r) = max(max(rj,f) + Pj,rk) + pk denote the completion time of job k

when immediately preceded by job j given that the machine becomes available

at time f.

A state in the BB&R algorithm will be represented by (a,Fa,Tc, fa).

4.2 Dominance Rules

This section presents several dominance rules used in the BB&R algorithm for the

l | r i | X^i scheduling problem. As described in Section 3.1, dominance rules are prop

erties that exploit the structure of optimal solutions, and hence, can be used as

pruning strategies. These rules identify specific properties that at least one optimal

solution must satisfy. These rules can prune many solutions, including optimal solu

tions; however, they will not prune all optimal solutions. These dominance rules are

designed to provide a significant reduction in the search space.

In order to describe these dominance rules, define an active schedule as a schedule

such that no jobs in the schedule can be scheduled earlier without causing a delay for

another job. In addition, a set of schedules is said to be dominant if it contains at

least one optimal schedule.

The BB&R algorithm in this chapter uses several dominance rules proposed in

Chu [16] and Jouglet et al. [50]. Individually, these dominance rules have been shown

to be exact (i.e., at least one optimal solution must satisfy a specific dominance

rule). These dominance rules have been modified such that they can be combined.

This section provides a proof showing that the combination of dominance rules used

in this BB&R algorithm can be used simultaneously without pruning all optimal

solutions.

Chu and Portmann [17] describe a sufficient condition for local optimality for

the total tardiness criterion. Jouglet et al. [50] expand on this work and provide a

41

www.manaraa.com

necessary and sufficient condition for local optimality and define a dominant subset

of schedules based on this necessary and sufficient condition, which is now formally

stated.

Definition 4.2.1 Jouglet et al. Necessary and Sufficient Condition [50]

An active schedule S is said to be Locally Optimal Well Sorted (LOWS-active) if every

pair of adjacent jobs j and k satisfy at least one of the following conditions:

1. Tjk(f) < Tkj(f) (where f is the completion time of the job preceding job j),

2. Tjk(f) = Tkj(f) andmax(rj,f) < max(rfc,f);

3. Tjkif) > Tkj(f) andm&x(rj,f) < max(rfc,f).

Theorem 4 states that given any schedule S, there exists a LOWS-active schedule

that is at least as good as S.

Theorem 4 [50] The subset of LOWS-active schedules is dominant for the one ma

chine total tardiness problem.

A modified LOWS-active schedule criterion is used in the BB&R algorithm pre

sented in this chapter. This modification is necessary in order to prove the exactness

of combining several other dominance rules used in the BB&R algorithm. Prior to

presenting the modified LOWS-active schedule criterion, the following total order is

defined.

Definition 4.2.2 Given two partial sequences of jobs a = (ai,o~2, • • •, °"m) and 0 =

(#i,02, • • • ,0m); c precedes 0, denoted as a —• 9, if either cCTfc = cek, fork = 1,2,... ,m

or there exists j such that caj < cej and cak = cgk, for k = j + l,j + 2,. .. ,m.

If a —> 9 and 6 —> a, then a <-> 9. However, if 9 -/> a, then a strictly precedes 9.

The modified LOWS-active schedule criterion, termed LOWS*-active is now formally

defined.

42

www.manaraa.com

Definition 4.2.3 An active schedule S is said to be LOWS*-active if every pair of

adjacent jobs j and k satisfy at least one of the following conditions:

1. Tjk(f) < Tkj(f) (where f is the completion time of the job preceding job j),

2. Tjk(f) = Tkj(f) and [(Cjk(f) < Ckj(f)) V {(Cjk(f) = Ckj(f)) A ((Pj < pk) V (Pj =

PkAj<k))}],

3. Tjk(f) > Tkj(f) and Cjk(r) < Ckj(r).

Note that the modification in the LOWS*-active schedule criterion compared to

the LOWS-active schedule is a minor change, however, this modification is necessary

to prove the exactness of the algorithm presented in this chapter, in combination

with the other dominance rules. The following proposition is needed to prove that

the subset of LOWS*-active schedules is dominant.

Proposition 1 Suppose a — (o"i, 02 , . . . , am) is a partial sequence of jobs such that

Gi and ai+\ do not satisfy the LOWS*-active criterion. Let a' — (ai,a2, • • •, <Tj_i,

a"j+1,crj, <7j+2,..., crm) be the sequence of jobs obtained from a by interchanging jobs

<Tj and ai+i. Then either T(cr') < T(a) or T(a') = T(a) and a' —> a.

Proof: To simplify the notation, let j = a*, k = o~i+i, and f = cai_x. All three of

the LOWS*-active conditions must be violated. Condition (1) of Definition 4.2.3 is

violated implies that Tjk (f) > Tkj (f).

Case 1: Tjk (r) > Tjy (f). Condition (3) of Definition 4.2.3 is violated implies that

Cjk (f) > Ckj (r) , which implies that interchanging jobs j and k will decrease

the total tardiness, i.e., T (a') <T(a).

Case 2: Tjk(f) = Tkj(f). Condition (2) of Definition 4.2.3 is violated implies that

Cjk(f) > Ck3{f).

43

www.manaraa.com

Case 2a: Cjk(f) > C^ir). Interchanging jobs j and k will not increase the

total tardiness, nor will it increase the completion times of jobs

Ci+2, Ci+3, • • •, crm, but it will decrease the completion time of the

job in position i + 1 in a'. Therefore, a' —> a.

Case 2b: Cjk{f) = Ckj(f). Condition (2) of Definition 4.2.3 is violated im

plies that Pj > pk- Interchanging jobs j and k will not increase the

total tardiness, nor will it change the completion times of the jobs

in positions i + 1, i + 2 , . . . , m. The completion time of the job in

position i in a' is less than or equal to cai, and hence, a' —> a. •

Proposition 1 states that interchanging any adjacent jobs in a non-LOWS*-active

schedule will either decrease the total tardiness or decrease the order of the sequence

defined by Definition 4.2.2. Theorem 5 formally states that the subset of LOWS*-

active schedules is dominant.

Theorem 5 Any sequence of jobs a can be transformed via a series ofpairwise inter

changes into a sequence of jobs a' such that a' is LOWS*-active and T (a') <T (a).

Proof: Proposition 1 shows that interchanging a pair of adjacent jobs that violate

the LOWS*-active criteria will either strictly decrease the total tardiness or leave it

unchanged. Only a finite number of interchanges can be made that decrease the total

tardiness. There can only be a finite number of interchanges between two interchanges

that decrease the total tardiness since each such interchange results in a new sequence

that precedes the old one. •

The next dominance rule presented is a memory-based dominance rule. Unlike

the LOWS*-active schedule criterion, a memory-based dominance rule compares two

partial sequences to determine if one dominates the other. Memory-based dominance

rules are not new; Baptiste et al. [4] and Jouglet et al. [50] used a similar memory-

based dominance rule in their algorithm, which they termed "better sequence". The

44

www.manaraa.com

Memory Dominance Rule (MDR) presented can be combined with the other domi

nance rules presented such that the full BB&R algorithm is proven to be exact. The

following definition defines the MDR used within the BB&R algorithm.

Definition 4.2.4 Memory Dominance Rule (M D R)

Let a = (cr1; CT2, • • • > °~m) and $ = (#i> S2, • • •, Sm) be two LOWS*-active partial sched

ules such that {a"i, (72,... , crm} = {Si, 52, • • •, Sm}. Then a dominates 5 if at least one

of the following conditions is satisfied.

1. Ta <TS andfc <fs,

2. Ta = Ts and rc < fs,

3. Ta — Ts and ra = f$ and a —> 5.

To prove that using the MDR with the LOWS*-active schedule criterion will not

prune out all optimal solutions, the following definitions are needed.

Definition 4.2.5 A sequence is a minimal element in a set of sequences if it is in

the set and if it is not strictly preceded by any other sequence in the set. Let

• Q denote the set of all optimal sequences,

• O1 C 0 denote the set of all optimal sequences that are LOWS*-active,

• fi2cn' denote the minimal elements of optimal LOWS*-active sequences.

Theorem 6 If 0 = {91,92,..., 8n) € fi!2 and 6m = (6>i, 02, • • •, 9m) is dominated by

another sequence a = (cr1; a2, • • •, crm) by the MDR, then a is a subsequence of a

sequence in fl2.

Proof: Let a' = (oi, a2,..., am, 6m+i,9m+2,..., 6n). a dominates 6m implies that

?o < Tgm. Therefore, the completion times of 0m+i,9m+2,..., 9n in a' are less than or

45

www.manaraa.com

equal to their respective completion times in 9. Furthermore, Ta < Tgm implies that

Tff' < Tg, and hence, a' is an optimal sequence. Since 9 is optimal, then T(a) — T(9m).

Now suppose that c„m < c$m. If any job in (9m+i, • • •, 9n) can be shifted to start

earlier in a' than in 9, then a1 strictly precedes 9, and by Proposition 1, a' can be

transformed into a LOWS*-active sequence that strictly precedes 9. However, this

is a contradiction, since 8 G Q2. Therefore, no job in (0m+i,0m+2, • • • ,0n)
 c a n De

shifted to start earlier. In particular, 9m+\ can not be shifted to start earlier, and

hence , sgm+1 = rgm+1, which implies that 8m+i cannot be interchanged with am in a'.

Therefore, a' is a LOWS*-active, optimal schedule that strictly precedes 9, which is

also a contradiction. Therefore, cam = cgm.

It has been established that T(a) — T(9m) and cam = cgm, which implies that

r'c — %m- Thus a dominates 9m implies that a —* 9m. Therefore, a' —> 9. a' can be

transformed into an LOWS*-active sequence a" that precedes o' and is optimal, a"

cannot strictly precede 9 because 9 G fi2. Hence a" <-• a' *-»• 9. O

Two other supplementary dominance rules are used in the BB&R algorithm,

namely the First Job Rule (FJR) [16] and the Equal Length Job Rule (ELJR) [4].

These rules are now formally presented.

Theorem 7 First Job Rule (FJR) [16]

If there is a job % such that i G J, and for all jobs j G J, Pi < Pj, di < dj, then there

is an optimal schedule in which job i precedes any job k such that rt < 7V

In case more than one job satisfies the FJR conditions, then the one with the

smallest index will be chosen.

The FJR suggests that certain jobs must be scheduled prior to scheduling any

other jobs. To show that the FJR can be used with the LOWS*-active schedule

criterion, the following theorem formally states that all LOWS*-active schedules also

satisfy FJR.

46

www.manaraa.com

Theorem 8 All LOWS*-active schedules satisfy the FJR.

Proof: Suppose a is a LOWS*-active schedule that does not satisfy the FJR. Let

k be the job with the smallest index such that pk < miniej£>j and dk < mmi€j di.

Let i be the job such that rk < r, and job i precedes job k in a. Let j be the job

immediately preceding job k in a and f be the completion time of the job immediately

preceding job j . Job i precedes job A; and rk < r, implies that rk < Sj, and hence,

jobs j and k can be interchanged without increasing the completion time of any jobs

(i.e., Cjk(f) > Ckj{f)). pk < Pj and dk < dj imply that Tjk(f) > Tkj(f). Therefore,

jobs j and k do not satisfy conditions (1) or (3) of the LOWS*-active criterion, and

hence, jobs j and k must satisfy condition (2). However, the only way that condition

(2) can be satisfied when Cjk(f) > Ckj(r) is to have pj < pk or pj = pk and j < k.

Neither of these are possible since pk < pj, dk < dj, and k has the smallest index of

any job that satisfies the FJR conditions. •

Although the FJR is stated in terms of the original problem, it can also be applied

to sub-problems in the BB&R algorithm. Given a partial sequence a = (o i , . . . , am),

if there exists a job A; such that pk < pj and dk < dj for all jobs j G Fa and rk <fa,

then job k can be scheduled before all the other jobs in Fa.

Another dominance rule used in the BB&R algorithm is the ELJR, which was

originally proposed by Baptiste et al. [4].

Theorem 9 Equal Length Job Rule (ELJR) [4]

Let i and k be two jobs such that p^ = pk. IfV, < rk and di < max(rfc + pk, dk), then

there exists an optimal schedule in which job % precedes job k.

Theorem 10 formally states that the ELJR can also be combined with the LOWS*-

active schedule criterion, the MDR, and the FJR.

Theorem 10 There exists an optimal schedule in fl2 that satisfies the ELJR.

47

www.manaraa.com

Proof: Let a be an optimal sequence that is not strictly preceded by any other

optimal sequence (i.e., a is a minimal element). Let a' be obtained by interchanging

jobs until the ELJR is satisfied. Then a' is optimal and is not strictly preceded by

any other optimal sequence. To complete the proof, it must be shown that u' is a

LOWS*-active schedule or can be transformed to be LOWS*-active.

Suppose o' is not a LOWS*-active schedule. Suppose jobs j and k are adjacent

jobs in a' that do not satisfy the LOWS*-active conditions. Let a" be obtained from

a' by interchanging jobs j and k. Let f be the completion time of the job immediately

preceding job j .

Case 1: Tjk(f) > Tkj(f). The proof of Proposition 1 shows that the total tardiness of

a" is less than a', which contradicts that a' is optimal.

Case 2: Tjk(f) = Tkj(f).

Case 2a: : Cjk(f) > Ckj(f). This is a contradiction since this implies that

a" strictly precedes a'.

Case 2b: Cjk(f) = Ckj(f).

Case 2bi: pj > pk. This is a contradiction since this implies that

a" strictly precedes a'.

Case 2bii: pj = pk. Since jobs j and k do not satisfy the LOWS*-

active schedule criterion, then j > k. This implies

that dj > dk due to the order in which the jobs are

sorted. If TJ > rk, then jobs j and k do not satisfy

the ELJR, which is a contradiction. If r\, < rk, then

dj > dk (due to the order in which the jobs are sorted

and j > k), so j and k can be interchanged without

violating the ELJR. After all such interchanges have

48

www.manaraa.com

been performed, a' will be a LOWS*-active, optimal

schedule that satisfies the ELJR. •

All the dominance rules presented in this section are combined and used in the

BB&R algorithm presented in this chapter. Theorems 5-10 establish that these dom

inance rules can be combined such that there must be at least one optimal solution

that remains unpruned by these rules. Note that there are other dominance rules

presented in the literature that are not used in this BB&R algorithm. For example

the generalized Emmons rules [4] and Theorem 3 of Chu [16] were not incorporated

into the BB&R algorithm. Some of the dominance rules in Jouglet et al. [50] based

on insertion and interchanging of jobs were also not included because they do not

fit well into the exploration strategy described in Section 4.4. Moreover, additional

dominance rules increase the difficulty in finding a proof of exactness for combining

additional rules, and it is not clear whether such a proof or a counterexample exists.

It may be possible to combine additional dominance rules to the BB&R algorithm.

However, the proofs presented in this chapter will not guarantee that the BB&R

algorithm will remain exact with these other dominance rules. Prior to outlining

the BB&R algorithm, the next section presents the different upper and lower bound

algorithms used in the BB&R algorithm.

4.3 Bounding Scheme

This section provides an overview of the algorithms for computing the upper and lower

bounds used in the BB&R algorithm for the l|r*t|]C U scheduling problem. Two upper

bound algorithms proposed by Chu [16], namely the IPRTT and the NDPRTT are

used to compute the initial upper bound. Two lower bound algorithms, including a

modified dynamic programming algorithm originally proposed by Lawler [65] and a

lower bound algorithm proposed by Baptiste et al. [4] are used to compute the lower

49

www.manaraa.com

bound. A brief overview of each of the bounding algorithms is provided.

The two upper bound algorithms, IPRTT and NDPRTT, are Greedy algorithms.

Both of these algorithms are based on a function called Priority Rule for Total Tar

diness (PRTT) [16], defined as

PRTT(z, A) = max(n, A) + max(max(r;, A) + p{, d,),

where i G J and A is the time at which the machine becomes available. Theorem 11,

presented in Chu [16] uses the PRTT function to define a locally sufficient condition

for optimality.

Theorem 11 [16]

Given only two jobs i and j to be scheduled on a machine that becomes available at

time A7 the sufficient condition for processing job i before job j in order to obtain an

optimal solution is PRTT(i, A) < PRTT(j, A).

At each iteration, the IPRTT attempts to schedule a job k with the current

minimum PRTT function value. It then attempts to insert any unscheduled jobs that

can be completed before job k. If no such jobs can be inserted before job k, the

process is repeated until all jobs are scheduled.

The NDPRTT schedules jobs based on the earliest release time, ties are broken

based on the smallest PRTT function value, and further ties are broken based on

smaller processing times. Baptiste et al. [4] propose a lower bound based on the

Generalized Emmons Rule. The following two propositions are used in their lower

bound algorithm.

Proposition 2 [4]

Let j and k be two jobs such that rj < rk,pj < pk, and dj < du- Then there exists an

optimal schedule in which job k begins after the end of job j .

50

www.manaraa.com

Proposition 3 [4]

Let j and k be two jobs such that Tj < ri~,Pj < pk, and dj > dk- Then exchanging dj

and dk does not increase the optimal total tardiness.

The Baptiste et al. [4] algorithm allows preemption, and modifies the due-date

of each job based on the current schedule. The modified due-dates are lower bounds

such that the computed total tardiness will not overestimate the true optimal total

tardiness. For the remainder of the chapter, this algorithm will be referred to as the

BLB.

Another lower bound for the l|rj|]P£, scheduling problem can be obtained by

relaxing the release times to all be zero. The resulting 1|| X^t scheduling problem

can be solved in 0(n4 X^=i Pi) t m i e u s m g Lawler's dynamic program, but the running

time may be too slow for the lower bound to be useful. Instead, a branch and

remember (B&R) algorithm was used to solve the relaxed problem. The method of

branching is based on the decomposition method that Lawler used in his dynamic

program and the improvements developed by Chang et al. [14]. Furthermore, the

states of this B&R algorithm are saved from the first time the lower bound algorithm

is called until the last time the lower bound algorithm is called. Therefore, as the

overall BB&R algorithm proceeds, the lower bound algorithm builds a database of

states. Many of the sub-problems for which lower bounds must be calculated are

very similar to each other, and hence, they share many states. The optimal solution

for the shared states do not have to be recomputed because they are stored in the

database. This approach greatly reduces the total computational effort required to

compute the lower bounds. Other more sophisticated exact algorithms for solving the

1|| Yl^i scheduling problem have also been proposed in the literature. Szwarc et al.

[96, 97] present different B&B algorithms for solving the 1|| YlU problem. In addition

to the decomposition methods used by Lawler [65] and Chang et al. [14], Szwarc et

al. [96] use additional decomposition rules that further eliminate possible positions

51

www.manaraa.com

for scheduling jobs. It may be possible to incorporate the rules used in these exact

algorithms for solving the 1|| YlU problem with the BB&R algorithm, to obtain a

even better overall performance.

The modified dynamic programming algorithm can also be used to estimate tighter

lower bounds based on decomposing unscheduled jobs into smaller groups. The set

of unscheduled jobs are broken into groups based on the following steps:

Step 1: Sort all unscheduled jobs in earliest due-date order, (j i , . . . ,jm).

Step 2: Let 5 = r^.

Step 3: Let the current earliest unscheduled job be j , ; add jt to the current group.

Step 4: Remove j% from the set of unscheduled jobs.

Step 5: 6 — S + Pi-

Step 6: If rj+i > 5, then start a new group, and let 5 = ri+\.

Step 7: Repeat from Step 3 until there are no more unscheduled jobs.

The modified dynamic programming algorithm is then used to compute the lower

bound for each of the groups. The sum of all the total tardiness for each group is

the new lower bound. For the remainder of the chapter, this new method for using

Lawler's dynamic programming algorithm will be referred to as Decomp-DP.

4.4 Branch, Bound, and Remember Algori thm

This section introduces the BB&R algorithm for the l | r j | ^ t , scheduling problem.

The BB&R algorithm is an enumeration, divide and conquer technique. Like other

B&B algorithm, the goal is to explore sub-problems until some of these sub-problems

52

www.manaraa.com

may be fathomed, and hence, reduces the search space. The BB&R algorithm dif

fers from other B&B algorithm in two fundamental ways. First, it incorporates the

DBFS exploration strategy that determines which sub-problem to explore. Second,

by design, the BB&R algorithm stores previously generated sub-problems such that

memory-based dominance rules can be applied efficiently.

The BB&R algorithm is a constructive B&B algorithm. It enumerates the so

lution space by building a search tree, constructing feasible schedules by iteratively

appending unscheduled jobs to partial schedules. Each internal node in the search

tree is a sub-problem, while a leaf in the search tree corresponds to a feasible solution.

The nodes in the search tree can be identified as states, (a, Fa,Ta,fa). A new state

is created by adding a new job to the partial sequence a. The dominance rules are

applied at each node, pruning possible branches along the search tree. Each visited

node in the search tree is stored in a hash table, a data structure that provides an

efficient look-up capability. By storing each node, the states are remembered, and

hence, the MDR can be applied. Two lower bounds are computed at each node, and

the maximum of the two is recorded.

The order in which the search tree is constructed can greatly affect the perfor

mance of any B&B algorithm. The BB&R algorithm uses the DBFS exploration

strategy described in Section 3.3.2 for constructing the search tree. See Section 3.3.2

for a description of the DBFS exploration strategy and psuedo-code. For evaluation

purposes, a DFS exploration strategy was also used in place of the DBFS exploration

strategy. See Section 4.5 for a comparison of the computational performances between

DBFS and DFS.

In the BB&R algorithm, a node in the search tree may be pruned in one of two

ways. It can be pruned either by the computed bounds or by the dominance rules.

The bounding scheme works as follow. Initially, prior to any branching, an upper

bound is computed based on the IPRTT and NDPRTT algorithms; the minimum of

53

www.manaraa.com

BB&R(cr,F<jiTa,fa, hash_table, h e a p (l , . . . , size(Fa))

LB = max(BLB(F(r,f(T), Decomp-LB(Fff,fff))
UB = min(IPPRT, NDPPRT)
Initialize heap(O)
while heap is not empty do

for i = 0 —• n do
cur_state = heap(i).pop
cur_lb = max(BLB(cur_state), Decomp-LB(cur_state))
if (curJb + cur_state.TCT) < UB then

PFa = ITR(cur_state.FCT) and FJR(cur_state.FCT) and LOWS*(cur_state.FCT)
and ELJR(cur_state.FCT)
for each j e PFa do

new_state.a = cur_state.a" + j
update new_state from cur_state
Violated_MDR= MDR(new_state)
if not Violated_MBDR then

Store(new_state) in hash_table
heap(i+l) .add(new_state)

end if
end for

end if
end for

end while

Figure 4.1: BB&R Pseudo-Code for the l|rj| Y^U Scheduling Problem

these two bounds is retained. As the branching process proceeds with additional jobs

being scheduled, lower bounds are computed using the BLB and the Decomp-DP. If

the lower and upper bounds are tight, then the branch is pruned.

As mentioned above, the dominance rules are also used for pruning branches along

the search tree. In addition, the dominance rule can also be used to filter jobs in Fa

that do not need to be considered as a next schedulable job. All of the dominance

rules are applied upon visiting each node of the search tree. The dominance rules are

applied in the following order: The FJR is first used to examine the set Fa, it identifies

a job that must be immediately scheduled next. If such a job exists, a single sub-

problem is created by appending the job to a. Otherwise, the Idle Time Rule (ITR)

54

www.manaraa.com

is then used to reduce the number of jobs that can be considered as a candidate for

being scheduled next. Let this set of jobs be denoted by PF„ (possible first). The ITR

removes jobs from FCT that have release times greater than minjeF(7 ma x^ , / ^) + Pj.

The LOWS*-active criterion is then applied to each of the jobs in PFa to further

filter PFa. Lastly, the ELJR is then applied to the remaining jobs in PFa. If at any

point PFa becomes empty, the entire branch is pruned. Sub-problems are created by

appending the jobs that satisfy the FJR, the ITR, the ELJR, and the LOWS*-active

criterion to a, one job at a time. Let a new state be denoted as (a', Fa>, Tar,rat). The

MDR is then applied to each new state. If a new state satisfies the MDR, then the

new state is stored and later explored. Figure 4.1 depicts the pseudo-code for the

BB&R algorithm with the DBFS implementation. Note that in addition to a hash

table, a heap structure is also needed for the DBFS implementation to store states

for each level of the search tree.

4.5 Computational Results

This section reports the computational results for the BB&R algorithm described

in Section 4.4. All the dominance rules and the different bounding algorithms pre

sented in this chapter have been incorporated into the BB&R algorithm. The BB&R

algorithm is evaluated for 2280 randomly generated test instances, using the same

scheme reported in Chu [16] and Baptiste et al. [4]. The generation scheme is based

on four parameters: number of jobs, processing time range, a, and /?, denoted as (n,

bmin, Pmax], a, ($)• Each instance consists of three vectors, p, r, and d, which are

randomly generated from three discrete uniform distributions. The processing times

are randomly sampled from the set {1 ,2 . . . , 10}, the release times are randomly

sampled from the set {0 ,1 , . . . , [cnX^J} anc^ ^i ~ (rj + Pi) *s randomly sampled

from the set {0 ,1 , . . . , [PYlPi}}- The parameters used for generating the test in-

55

www.manaraa.com

Table 4.1: BLB and the Decomp-DP Lower Bounds Comparison for the l | r j | ^ t j
Scheuduling Problem in CPU Time (sec.)

a = 0.5,0 = 0.05 a = 0.5,/? = 0.25 a = 0.5,0 = 0.5
n BLB Decomp-DP BLB Decomp-DP BLB Decomp-DP
10 0.08 0.1 0.08 0.09 0.09 0.08
20 0.08 0.08 0.09 0.08 0.12 0.08
30 0.09 0.09 0.25 0.09 1.9 0.09
40 0.12 0.1 4.5 0.1 81.5 0.1
50 0.2 0.1 33.4 0.1 - 0.2

stances are n = 10,20,.. . , 100,120,..., 200, 250,300,400,500, bmin,Pmax] = {[0,10]},

a = 0,0.5,1.0,1.5, and (3 = 0.05,0.25,0.5. For each combination of parameter set

tings, 10 random instances are generated for a total of 2280 instances. Each instance

in the test set is restricted to a one hour total processing time limit and a 8 million

state space memory limit. All the experiments in the chapter were executed on a 2

GHz Pentium D using 1 GB of RAM.

Prior to examining the full power of the BB&R algorithm, the two different lower

bound algorithms, namely the BLB and the Decomp-DP are tested individually using

the DBFS exploration strategy in conjunction with all the dominance rules described

in Section 4.2. Table 4.1 reports the average running time in CPU seconds for in

stance size n = 10,20,... , 50, with the hardest parameter setting, a = 0.5 and

(3 = 0.05,0.25,0.5. Note that in Table 4.1, all the test instances are solved to opti-

mality except for the set of instances with n = 50, a — 0.5, and (3 = 0.5, where BLB

was only able to solve 20 percent of the test instances. The computational results for

the larger instances are reported in Table 4.2. Table 4.2 reports the average running

times and the percent of instances solved. The average running time is reported only

for the set of instances where the complete set is solved to optimality.

The computational results reported in Table 4.1 and 4.2 show that the BB&R

algorithm with the Decomp-DP lower bound algorithm provides significantly better

results than the BB&R algorithm with the BLB lower bound algorithm. Table 4.1

56

www.manaraa.com

Table 4.2: BLB and Decomp-DP Lower Bounds Comparison for the l|rj | ^ ti Schedul
ing Problem in CPU Time (sec.) and Percentage Solved (Larger Instances)

a = 0.5,0 = 0.05 a = 0.5,0 = 0.25 a = 0.5,0 = 0.5
n BLB Decomp-DP BLB Decomp-DP BLB Decomp-DP
60
70
80
90
100
150
200
250
300
400

0.5
1.7
5.1
12.6
48

30%
0%
0%
0%
0%

0.2
0.2
0.3
0.4
0.5
2.0
8.1
19

244
90%

80%
30%
0%
0%
0%
0%
0%
0%
0%
0%

0.2
0.2
0.9
1.0
1.6
3.7
13.7
90%
245
40%

0%
0%
0%
0%
0%
0%
0%
0%
0%
0%

0.2
0.3
0.3
0.5

90%
90%
13.8
90%
80%
20%

shows that the running time when using the Decomp-DP lower bound algorithm

scales more efficiently as the size of the problem instances increases. Moreover, Table

4.2 shows that when using the Decomp-DP lower bound algorithm with the BB&R

algorithm, larger size instances can be solved to optimality. For a — 0.5 and 0 = 0.5,

the BB&R algorithm with the BLB lower bound algorithm is not able to solve any

test instances with n > 60, while using the Decomp-DP lower bound algorithm, the

BB&R algorithm is able to solve 80% of all instances with n = 300.

For further evaluation purposes, the BB&R algorithm is implemented using both

the DBFS exploration strategy and the DFS exploration strategy. Let the BB&R

algorithm using the DBFS exploration strategy be denoted as BB&R-DBFS, and let

the BB&R algorithm using the DFS exploration strategy be denoted as BB&R-DFS.

Tables 4.3 and 4.4 report the average and the maximum running time for the BB&R-

DBFS and BB&R-DFS respectively. Note that the number represented in parenthesis

denotes the number of test instances solved.

Tables 4.3 and 4.4 report the results for only the larger instances. For the smaller

instances, with n < 100, the BB&R-DBFS algorithm was able to solve all instances

to optimality with an average running time of 0.2 seconds and maximum running

57

www.manaraa.com

time of 13 seconds. Instances are considered unsolved if a solution cannot be found

within the one hour time limit or due to allocating more memory than available. In

Table 4.3, all unsolved instances with n < 400 were due to the time restriction, while

all unsolved instances with n — 500 were due to memory limitation. Note that in

Table 4.3, though it may appear that as n increases, the problems are getting easier

(since the average CPU times are shrinking; see in particular n — 400, 500), the test

instances are in fact getting harder to solve (since fewer instances are being solved

to optimality). To illustrate this point, for a = 0.5 and /3 = 0.05, the average CPU

time reported for n — 500 is 772 sec, which is less than 2034 sec, the average CPU

time reported for n = 400. However, for n = 500, only one test instances is solved to

optimality, while for n = 400, seven test instances are solved to optimality.

The computational results reported in Table 4.4 show that the DFS exploration

strategy is substantially inferior to the DBFS exploration strategy. For a ^ 0, the

average running time for using the DBFS exploration strategy is faster or at least

as good as the average running time for using the DFS exploration strategy. Note

that for a = 0, Lawler's dynamic programming algorithm [65] solves all instances

to optimality, and hence, the exploration strategies do not affect the performance

of the BB&R algorithm. In addition, Table 4.4 shows that there are many more

instances that were left unsolved by the BB&R-DFS algorithm. Unlike the BB&R-

DBFS algorithm, the BB&R-DFS algorithm encounters memory limitations starting

at instances with n = 140. The BB&R-DFS algorithm consumes more memory and

has a slower computational running time compared to the BB&R-DBFS algorithm.

In addition to evaluating the computational performances of the BB&R-DBFS

algorithm, Table 4.5 provides the necessary data for the physical memory usage of

the algorithm. Table 4.5 reports the maximum number of states stored for the set

of test instances with a = 0.5 and j3 = 0.5. This parameter setting is chosen for

this evaluation because these test instances consume more memory than any other

58

www.manaraa.com

T
ab

le
 4

.3
:

l|
r;

|
Y

,U

B
B

&
R

-D
B

FS
 A

lg
or

it
hm

:
A

ve
ra

ge
 a

nd
 M

ax
im

um
 C

P
U

 T
im

e
(s

ec
.)

n
=

 6
0

n
=

 1
00

n

=
 1

50

n
=

 2
00

n

=
 2

50

n
=

 3
00

n

=
 4

00

n
=

 5
00

a

0

0

0

0.
5

0.
5

0.
5

1

1

1

1.
5

1.
5

1.
5

P
0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

Av
g.

0.
1

0.
1

0.
1

0.
3

0.
4

0.
5

0.
2

0.
2

0.
1

0.
1

0.
1

0.
1

M
a
x

o.
i.

0.
1

0.
1

0.
4

2

1

0.
4

0.
8

0.
2

0.
2

0.
2

0.
1

Av
g.

0.
1

0.
1

0.
1

1.
1

3

1(
9)

0.
5

2

0.
1

0.
2

0.
1

0.
1

M
a
x

0.
1

0.
1

0.
1

2

21

- 0.
6

14

0.
4

0.
3

0.
5

0.
1

Av
g.

0.
1

0.
1

0.
1

2

4

9(
9)

12

0.
6

0.
1

0.
2

0.
1

0.
1

M
a
x

0.
1

0.
1

0.
1

4

9

- 53

2

0.
1

0.
4

.1

0.
1

Av
g.

0.
1

0.
1

0.
1

23

28

29

6

9

1

2

0.
1

0.
1

M
a
x

0.
1

0.
1

0.
1

45

67

79

11

36

13

3

0.
1

0.
1

Av
g.

0.
1

0.
1

0.
1

54

90
(9
)

19
2(
9)

18

12

0.
1

5

0.
1

0.
1

M
a
x

0.
1

0.
1

0.
1

11
0

- - 47

83

0.
1

10

0.
1

0.
1

Av
g.

0.
1

0.
1

0.
1

52
9

53
2

26
9(
7)

37

0.
1(
9)

0.
1

5

0.
1

0.
1

M
a
x

0.
1

0.
1

0.
2

12
42

13

42

- 82

- 0.
1

11

0.
1

0.
1

Av
g.

0.
1

0.
2

0.
2

20
34
(7
)

64
5(
4)

15
40
(i
)

40
3(
9)

0.
1(
9)

0.
1

21

0.
1

0.
1

M
a
x

0.
1

0.
2

0.
2

- - - - - 0.
1

52

0.
1

0.
1

Av
g.

0.
1

0.
1

0.
2

77
2(
i)

98
1(

2)

27
3(
i)

34
2(
7)

0.
1

0.
1

27

0.
1

0.
1

M
a
x

0.
1

0.
1

0.
3

- - - - 0.
1

0.
1

65

0.
1

0.
1

www.manaraa.com

T
ab

le
 4

.4
:

l|
r,

|
J2

U
 B

B
fc

R
-D

F
S

 A
lg

or
it

hm
:

A
ve

ra
ge

 a
nd

 M
ax

im
um

 C
P

U
 T

im
e

(s
ec

.)

n
=

 6
0

n
=

 1
00

n

=
 1

50

n
=

 2
00

n

=
 2

50

n
=

 3
00

n

=
 4

00

a 0 0 0 0.
5

0.
5

0.
5 1 1 1 1.
5

1.
5

1.
5

P
0.

05

0.
25

0.

5
0.

05

0.
25

0.

5
0.

05

0.
25

0.

5
0.

05

0.
25

0.

5

A
vg

.
0.

1
0.

1
0.

1
0.

4
0.

7
0.

9
0.

2
0.

2
0.

1
0.

1
0.

1
0.

1

M
ax

0.

1
0.

1
0.

1 1 3 6 0.
6

0.
6

0.
1

0.
1

0.
1

0.
1

A
vg

.
0.

1
0.

1
0.

1 4 3 4(
9)

1 11

0.

1
0.

3
0.

1
0.

1

M
ax

0.

1
0.

1
0.

1 9 20

- 4 10
0

0.
3

1.
5

0.
1

0.
1

A
vg

.
0.

1
0.

1
0.

1
28

19

2(
9)

45

9(
8)

5 5 0.
1 1 0.
1

0.
1

M
ax

0.

1
0.

1
0.

1
80

- - 17

48

0.

1 4 0.
1

0.
1

A
vg

.
0.

1
0.

1
0.

1
19

6
13

6(
6)

49

(8
)

11
6

0.
3 1 2 0.
1

0.
1

M
ax

0.

1
0.

1
0.

1
60

7 - 10
4

60
1

0.
9 13

3 0.
1

0.
1

A
vg

.
0.

1
0.

1
0.

1
60

2
19

1(
3)

14

9(
5)

26

6
0.

5
0.

1
11

0.

1
0.

1

M
ax

0.

1
0.

1
0.

1
18

49

- -
12

60

5 0.
1

27

0.
1

0.
1

A
vg

.
0.

1
0.

1
0.

1
13

40
(3

)
-

46
7(

4)

48
2(

9)

0.
1(

9)

0.
1 9 0.
1

0.
1

M
ax

0.

1
0.

1
0.

1 - - -
18

72

0.
1

0.
1

46

0.
1

0.
1

A
vg

.
0.

1
0.

1
0.

1
41

(D

- -
18

17
(i

)
0.

1(
9)

0.

1
11

5(
9)

0.

1
0.

1

M
ax

0.

1
0.

1
0.

2 - - - - - 0.
1

99
3

0.
1

0.
1

www.manaraa.com

instances prior to any memory limitations. Also, the test instances with a — 0.5

and 0 = 0.5 seem to be the hardest test instances. Note that from Table 4.5, the

largest instances that were solved without running into memory limitation are the

n = 250 size test instances. However, the maximum number of stored states is from

the n = 100 test instances. The maximum number of stored states for n = 100

and n — 250 is 277,977 and 187,231 states, respectively. For each state stored, the

BB&R algorithm requires 11 integer types and a variable size bit vector. The largest

bit vector used in our experiments is 63 bytes long. The total memory consumption

for each stored state is 107 bytes, where 44 bytes are from the integer type and 63

bytes are from the bit vector. Therefore, for n = 100 and n = 250, the BB&R-

DBFS algorithm uses approximately 30 MB and 20 MB of memory, respectively.

Note that this is a slight overestimate since the bit vector is not always 63 bytes

long. Furthermore, all computational experiments are limited to a maximum of 8

million states. Assuming that each states consumes 100 bytes, then the BB&R-

DBFS algorithm approximately consumes at most 800 MB of memory. Therefore,

from Tables 4.1, 4.2, and 4.5, the performance superiority of the BB&R algorithm

compared to previous algorithms is not due to the additional memory, but rather,

a result of the dominance rules, the DBFS exploration strategy, and the improved

Decomp-DP lower bound algorithm.

To further provide a more complete evaluation of the BB&R-DBFS algorithm, it

is also compared with the algorithm presented in Jouglet et al. [50], denoted as the

JBC algorithm. Both the BB&R-DBFS and the JBC algorithm are executed on the

same computing platform over the same test instances used in the Jouglet et al. [50].

Tables 4.6 and 4.7 report the average running time for the BB&R-DBFS and the

JBC algorithm respectively. Note that the values that are in parenthesis denote the

number of instances solved. The last column labeled "Largest ri" reports the largest

size instances where at least 80% of the test instances for that parameter setting are

61

www.manaraa.com

Table 4.5: l H £ £ j BB&R-DBFS Algorithm: Maximum and Average Number of
Stored States (a = 0.5,0 = 0.5) ^ ^

n
10
20
30
40
50
60
70
80
90
100
150
200
250

Max.

9
22
113
335
3726
2008
4031
1731
4441
277977
190869
37658
187231

Avg.

2.5
4.8
38.9
76.9
479.8
656.3
569.3
549

1154.9
28411
26148
14287.7
89696

solved to optimality.

The performance of the BB&R-DBFS algorithm compares favorably to the JBC

algorithm, both in terms of speed and the size of the largest problems that can be

solved. Table 4.6 and 4.7 demonstrate that the average running times for the BB&R-

DBFS algorithm are between two to four orders of magnitude faster for the harder

parameter settings. For example, for n = 60, a — 0.5, and /? = 0.25, the average

running time for their algorithm was 88 seconds while the average running time for

BB&R-DBFS was 0.3 seconds. For n — 60, a = 0.5, and {3 = 0.5, the average

running time for the JBC algorithm was 1619 seconds while the average running time

for BB&R-DBFS was 0.4 seconds. BB&R-DBFS solved all the instances with a = 0

without branching since the lower bound based on the 1|| J2 U problem was tight. The

computational results in Table 4.6 for a = 0 clearly show that the B&R algorithm

used to solve the l||5^<i problem provides a significant speedup.

In terms of the size of the largest problems that can be solved, for the hardest

parameter settings with a = 0.5 and (5 = 0.5, the JBC algorithm was unable to solve

80% of the instances with n = 70, whereas BB&R-DBFS was able to solve 80% of

62

www.manaraa.com

T
ab

le
 4

.6
:

l|
ri

|£
)*

i
B

B
fc

R
-D

B
FS

 A
lg

or
it

hm
 U

si
ng

 J
ou

gl
et

 e
t

al
.

[5
0]

 T
es

t
In

st
an

ce
s

in
 A

ve
ra

ge
 C

P
U

 T
im

e
(s

ec
.)

a 0

0

0

0.
5

0.
5

0.
5

1

1

1

1.
5

1.
5

1.
5

P
0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

n
=
 6
0

0.
1

0.
1

0.
1

0.
2

0.
3

0.
4

0.
1

0.
2

0.
1

0.
1

0.
1

0.
1

n
 =
 7
0

0.
1

0.
1

0.
1

0.
3

0.
4

0.
3

0.
2

0.
2

0.
2

0.
1

0.
1

0.
1

n
 =
 8
0

0.
1

0.
1

0.
1

0.
4

0.
3

0.
7

0.
3

0.
2

0.
2

0.
2

0.
1

0.
1

n
 =
 9
0

0.
1

0.
1

0.
1

0.
4

1.
1

0.
5

0.
5

0.
6

0.
2

0.
2

0.
1

0.
1

n
 =
 1
0
0

0.
1

0.
1

0.
1

1.
4

1.
5

1.
2(
9)

0.
5

0.
7

11

0.
2

0.
1

0.
1

n=
 1
50

0.
1

0.
1

0.
1

5.
4

40
(9
)

13

1.
6

20

0.
1

0.
7

0.
3

0.
1

n
 =
 2
0
0

0.
1

0.
1

0.
1

12

18
(9
)

35

5

2

0.
1

1.
3

0.
1

0.
1

n
 =
 2
5
0

0.
1

0.
1

0.
2

55

73
(9
)

94
(9
)

10

19
(7
)

0.
1

5

22

0.
1

n
 =
 3
0
0

0.
1

0.
1

0.
1

47
7

23
8(
5)

24
0(
8)

43

16

0.
1

6

0.
1

0.
1

n
 =
 3
5
0

0.
1

0.
1

0.
2

- - - 25
2

0.
1(
8)

0.
1

20

0.
1

0.
1(
9)

La
rg
es
t

50
0

50
0

50
0

34
0

19
0

29
0

40
0

24
0

50
0

50
0

50
0

50
0

www.manaraa.com

T
ab

le
 4

.7
:

l|r
-j

| Y
^U

 J
B

C
 A

lg
or

it
hm

 U
si

ng
 J

ou
gl

et
 e

t
al

.
[5

0]
 T

es
t

In
st

an
ce

s
in

 A
ve

ra
ge

 C
P

U
 T

im
e

(s
ec

.)

a 0

0

0

0.
5

0.
5

0.
5

1

1

1

1.
5

1.
5

1.
5

P
0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

0.
05

0.
25

0.
5

n
=
 6
0

0.
1

0.
5

7

2.
6

88

16
19
(8
)

1.
2

1.
6

0.
01

0.
3

0.
03

0.
01

n
=
 7
0

0.
2

1

11

7

59
0

33
87
(5
)

6

4

0.
04

0.
4

0.
03

0.
01

n
=
 8
0

0.
3

2.
4

27

20

17
25
(7
)

- 28

8

0.
03

1.
8

0.
05

0.
01

n
=
 9
0

0.
4

6

52

59

- - 25

7

0.
2

2.
4

0.
04

0.
01

n
=
 1
0
0

0.
4

8

11
1

20
2

- - 12
3

0.
6

1

6

0.
1

0.
01

n
=
 1
5
0

2.
3

31

64
7(
9)

27
71
(7
)

- - -

15
(9
)

54

13

0.
3

0.
01

r
a
 =
 2
0
0

9.
1

46
0

- - - - - 7

0.
1

17
4

1.
2

0.
01

n
=
 2
5
0

24

13
65
(7
)

- - - - - 29
2

.1
(9
)

43
4

4

0.
01

n
=
 3
0
0

48

- - - - - -

32
(8
)

0.
1

15
0(
9)

14

0.
01

n
=
 3
5
0

14
9

- - - - - -

0.
1(
7)

0.
1

63
4

0.
1

66

La
rg
es
t

50
0

24
0

18
0

15
0

70

60

15
0

34
0

50
0

50
0

50
0

50
0

www.manaraa.com

the instances with up to n = 290 jobs. For six different combinations of a and {3,

BB&R-DBFS was able to solve problems that were at least twice as large as those

solved with the JBC algorithm. However, it is important to note that for a = 1 and

p = 0.25 with n = 250, the BB&R-DBFS algorithm did not perform as well the JBC

algorithm. The JBC algorithm was able to solve all 10 instances while the BB&R-

DBFS algorithm was only able to solve 7 instances. It is also worth noting that the

BB&R-DBFS algorithm performed much better then the JBC algorithm for the same

parameter settings for n > 250. Note that n = 500 is the largest size instance in the

test set, though the computational results indicate that for BB&R-DBFS can solve

much larger instances for some of the combinations of a and f3 parameter settings.

4.6 Conclusion

This chapter presents the BB&R algorithm using the DBFS exploration strategy to

solve the l | r j | ^ i j scheduling problem. Several previously known dominance rules

are incorporated into the BB&R algorithm. This chapter provides a proof showing

that the combination of dominance rules used in the BB&R algorithm remains exact.

In addition, this chapter provides a memory-based enhancement to the Lawler [65]

dynamic programming algorithm, which improves the computational performance for

computing the lower bound. Furthermore, a new decomposition approach used with

the Lawler [65] dynamic programming algorithm provides tighter lower bounds. The

computational results of this chapter show that the combination of all the domi

nance rules, DBFS exploration strategy and improved bound computation results

in a highly efficient BB&R-DBFS algorithm. The BB&R-DBFS algorithm outper

forms the current best known algorithms for the hardest test instances, and performs

equally well for the easier test instances. The new DBFS exploration strategy pro

vides a significant computational speedup compared to the more traditional DFS

65

www.manaraa.com

exploration strategy. Incorporating the new DBFS exploration strategy also allows

the BB&R-DBFS algorithm to solve larger instances.

66

www.manaraa.com

Chapter 5

The l\STsd\J2k Scheduling
Problem

Over the past fifty years, there has been a growing research interest in scheduling

problems, however, the majority of the literature, assumes that setup times are negli

gible. In practice, assumptions with sequence independent setup time are inadequate

in modeling real-world problems [85, 99].

This chapter considers minimizing total tardiness on a single machine scheduling

problem with sequence dependent setup times. This problem, denoted as l|5Tg(i| YlU

[44, 1], has several variations including minimizing total setup time, minimizing make-

span, and minimizing the maximum tardiness, among others. See Allahverdi et al. [1]

for a comprehensive survey of various scheduling problems with setup times. Note that

when the objective is to minimize total setup time, the problem is equivalent to the

classic traveling salesman problem that is iVP-hard. One well studied variation of the

l|STsd| YLU is the 1|| Yl^i scheduling problem, where the setup time is ignored. The

1|| ^2U scheduling problem is also iVP-hard [31]. Several exact algorithms, including

dynamic programming and branch and bound (B&B) algorithms, have been proposed

by Lawler [65], Potts and Van Wasenhove [88], Szwarc et al. [96], and Chang et al.

[14].

While there are numerous exact algorithms for solving the 111 X^i scheduling

problem, there are few exact algorithms in the literature for solving the l|ST5f/| J^tj

scheduling problem. Most of the literature propose the use of meta-heuristics such

as simulated annealing [98], genetic algorithms [2, 90, 99], tabu search [69], and ant

colony algorithms [36]. Gupta and Smith [45] also propose the greedy randomized

67

www.manaraa.com

adaptive search procedure (GRASP) and a local search heuristic for the problem.

Constructive heuristics and improvement heuristics have also been developed, though

the solution quality with such heuristics is poor and requires intensive computational

time [67]. Tan et al. [99] compare the performances of various meta-heuristics for

solving the l\STsd\J2U scheduling problem. Tan et al. [99] also report that B&B

algorithm seems to be the most effective for solving smaller size problems (less than

15 jobs), while simulated annealing and random-start local search have better per

formances for larger size problems. Lin and Ying [69] also compare various meta-

heuristics for the weighted total tardiness problem, l|STsd| ^w{ti.

The most common exact algorithm for solving the l|STS(i| Yl U scheduling problem

is B&B algorithms. Ragatz [89] proposes a B&B algorithm for solving the l|STsd| YiU

scheduling problem. An algorithm for computing a lower bound and some dominance

properties are also presented in Ragatz [89]. Other variations of B&B algorithms

have also been proposed by Souissi and Chu [95], Luo and Chu [72, 70], and Luo et

al. [71]. The differences among these proposed B&B algorithms include variations

of the dominance rules, bounding schemes, and the exploration strategies used. Luo

and Chu [72] report the best computation results, claiming to solve instances with up

to size 30 jobs.

The Branch, Bound, and Remember (BB&R) framwork presented in Chapters 3

and 4, with the Best First Search (BFS) exploration strategy is used in this chapter

to solve the l|STsd| J2U scheduling problem. A new memory based dominance rule

is incorporated into the BB&R algorithm for pruning dominated sub-problems. In

addition, the Branch and Remember (B&R) algorithm presented in Chapter 4 for

solving the 111 ^ ij is used to compute tighter lower bounds [65].

This chapter is organized as follows. Section 5.1 describes the l|STSd| ^ U schedul

ing problem and the necessary notation used in this chapter. Section 5.2 outlines the

BB&R algorithm, including the new memory based dominance rule and the B&R

68

www.manaraa.com

algorithm for computing the lower bound. Section 5.3 provides a counterexample to

the B&B algorithm described in Luo and Chu [72] and Lu et al. [71]. Computational

results are reported in Section 5.4, followed by concluding comments in Section 5.5.

5.1 Notations

The l|STS(j|5^it single machine scheduling problem consist of a set of jobs J =

{1,2, . . . , n} to be scheduled in sequence, where each job has a processing time pi, a

due date d,, and a vector of setup times St = (s0,j, Si,j, • •., sn>i), where S;j is the setup

time for job j if it is scheduled immediately after job i. The setup time s0<i represents

the setup time incurred for scheduling job % as the first job in the scheduled sequence.

All jobs are available for processing at time zero. Processing a job incurs a sequence

dependent setup time and a processing time.

The following notations and assumptions are used in the remainder of the chapter.

Let a = (cri,er2,..., crm) be a partial sequence of scheduled jobs, where <Tj € J for

i = 1, 2 , . . . , m and m < n. Let

• cai — J2)=i s<7j-ij +'Po-ji the completion time of job cr, in job sequence a,

• Ca = cCTm, the completion time of job sequence a,

• tai = max(0, cai — dai), the tardiness of job cr* in job sequence a,

• Ta = Y^iLi ^<Jii the total tardiness for job sequence <J,

• Ta(t), the total tardiness of job sequence a if its starting time is at time t with

no initial setup time,

• FCT, the set of unscheduled (i.e., free) jobs.

The objective of the l|<STSd|]T)^ scheduling problem is to find a sequence of

scheduled jobs with minimum total tardiness, Y17=i h-

69

www.manaraa.com

5.2 Branch, Bound, and Remember Algorithm

This section introduces the BB&R algorithm for solving the l|STSd| Y^U scheduling

problem. Section 5.2.1 describes the memory-based dominance rule used for reducing

the solution space. Section 5.2.2 provides an overview of the bounding scheme used

to compute the lower bound, including a B&R algorithm first introduced in Kao et

al. [55]. A description of the BB&R algorithm is provided in Section 5.2.3.

5.2.1 Dominance Rule

The memory-based dominance rule, called the Memory Dominance Rule (MDR) for

the l|STsd| J2U scheduling problem, compares two partial sequences to determine if

one dominates the other. The MDR determines which partial sequence provides the

guarantee that would lead to a solution that is better or at least as good as other

solutions generated from the other partial sequence. The MDR is memory-based

since it requires the BB&R algorithm to store all partial sequences that have been

previously explored for comparison. The following definition defines the MDR used

in the BB&R algorithm.

Definition 5.2.1 Let a = (o"i,o"2, • • •, o~m) o,nd 8 = (81,82,... ,8m) be partial se

quences of jobs. Then a dominates 8 if (Fg = Fa) A (ca < eg) A (ta < tg) A (am = 8m).

The MDR suggests that dominant partial sequence can result in a solution with

equal or less total tardiness than any other solution generated from the dominated

partial sequence. Theorem 12 shows that the MDR will not prune a superior solution.

Theorem 12 Let a = (ai ,«2, . . . ,ai) and f3 = (j3i,02, • • •, A) be two partial se

quences of scheduled jobs. Let 0* = (0i,02, • • •, 0i, 0t+i, • • •, 0n) be a full sequence of

scheduled jobs with the least total tardiness that is generated by 0. If a dominates 0,

70

www.manaraa.com

then there exist a full sequence of scheduled job a* generated by the partial sequence

of scheduled jobs a such that Ta* < T@*.

Proof: If a dominates (3, then we can construct a sequence a* = (ct\,a2, • • •

,ai,(3i+i, ...,pn). Let the subsequence (3' = (/?i+1,/3i+2,.../?n). The full sequence

of scheduled jobs a* is a feasible job schedule because Fa = Fp. Since a, = $,

then the setup time sai,/3i+1 — Sft.ft+i. Also, since Ca < Cp and Ta < T@, then

Ta. =Ta + Tfr(Ca + saiiA+1) < T^ + ^ (C ^ + sA)A+1) = 2> . Therefore, there exist

a job sequence that is at least as good as /3*. D

5.2.2 Bounding Scheme

This section provides an overview of the bounding scheme used in the BB&R algo

rithm for the l|STS(i| J2h scheduling problem. The quality of the upper and lower

bounds can lead to significant improvements in the performance of the overall algo

rithm. A local search method is used to generate the initial upper bound. Two lower

bound algorithms are then used to compute the lower bound at each branch.

The bounding scheme works as follows. Prior to any branching, a local search

method is used to generate an initial solution as the upper bound. The branching

process proceeds by scheduling additional jobs to the partial sequences. At each

branch, two lower bound algorithms are used to compute a lower bound based on the

remaining free jobs. The maximum of the two computed lower bounds is kept. If the

lower and upper bounds are equal (i.e., tight), then the branch is pruned.

The initial local search method for generating the upper bound uses a 2-exchange

neighborhood. A 2-exchange neighborhood generates a new solution by randomly

swapping two jobs in the scheduled sequence. If the new solutions generated have

less total tardiness, the new solution is accepted. One thousand 2-exchange iterations

are executed to generate the initial upper bound.

71

www.manaraa.com

Two lower bound algorithms are used at each branch to compute the lower bound.

The first lower bound algorithm, denoted as the RLB algorithm, was originally pro

posed by Ragatz [89]. Given a partial sequence a, the RLB algorithm combines the

tardiness of the scheduled jobs, Ta, with a lower bound based on the remaining un

scheduled jobs, Fa. The RLB algorithm computes a lower bound by adjusting the

processing time and the due dates of the jobs in Fa. The processing time are adjusted

to include the minimum setup time. Jobs are then scheduled on a shortest operation

time order. The corresponding due dates for each jobs are also re-ordered to an ear

liest due date order. Tardiness is then computed based on these adjusted processing

times and due dates [89, 99].

The second lower bound algorithm used for computing the lower bound is a B&R

algorithm presented in Chapter 4. This lower bound algorithm, denoted as the KSJLB

algorithm in this chapter, is a B&R algorithm that uses the decomposition rules based

on Lawler's dynamic program for solving the 111 J2 U scheduling problem [65]. The

KSJLB also incorporates the improved decomposition methods proposed by Change

et al. [14]. To provide a further speedup to the original dynamic program proposed by

Lawler [65], the KSJLB algorithm builds a database of states as the lower bounds are

computed. Since many sub-problems for which the lower bounds must be computed

share the same states, the KSJLB algorithm avoids re-solving these sub-problems

by storing each state, which efficiently reduces the computational effort required to

compute the lower bound.

In order to apply the KSJLB algorithm, the l|STsd| J2U problem is relaxed by

adjusting each job's processing time to include the minimum setup time and ignoring

the setup time in the schedule. That is for each job j , the adjusted processing time

is p'j = pj + mm{sj j | i = 1 , . . . , j ' — 1, j + 1 , . . • ,n}, which is then used to compute

the lower bound by the KSJLB algorithm. Note that if all setup times are equal, the

KSJLB algorithm finds the optimal solution.

72

www.manaraa.com

5.2.3 The Algorithm

The BB&R algorithm presented in this chapter uses a Best First Search (BFS) ex

ploration strategy. Various B&B exploration strategies have been proposed in the

literature. Souissi and Chu [95] propose four different exploration strategies for their

B&B algorithm, which are variations of Depth First Search (DFS) and BFS. Ragatz

[89] also proposes a different exploration strategy where the search consists of switch

ing between DFS and BFS in the branching process. Note that the BB&R algorithms

presented in Chapters 3 and 4 incorporate the Distributed Best First Search (DBFS)

exploration strategy (see Section 3.3.2). Chapters 3 and 4 show that the BB&R al

gorithm with the DBFS exploration strategy outperforms the best known algorithms

in the literature for both the l|rj| J2 Ui and the l|rj | "^U scheduling problems.

The BB&R algorithm is a constructive B&B algorithm. Solutions are generated

by sequentially appending unscheduled jobs until a complete schedule is found. Each

node in the B&B search tree is denoted by a three-tuple (a, Fa,Ta), where a is a

partial sequence of scheduled jobs, Fa is the set of unscheduled jobs, and Ta is the total

tardiness for the partial sequence a. Branching in the BB&R algorithm consists of

exploring a node by appending an unscheduled job to a. Lower bounds are computed

at each node based on Ta and Fa. The maximum lower bound obtained by the RLB

and the KSJLB algorithm is kept as the lower bound at that node. Each visited node

is then stored in a hash table, and hence, remembered. By storing each node, the

MDR can then be applied for pruning dominated branches. Additional branches are

also pruned if the lower and upper bounds are tight.

The BB&R algorithm is now formally outlined by the following steps:

Step 1: Generate the upper bound, ub, by the 2-exchanged neighborhood local search.

Step 2: Compute the lower bound, lb, by taking the maximum of the two lower

bounds computed by the RLB and the KSJLB algorithms.

73

www.manaraa.com

Step 3: If lb — ub, then the optimal solution is found and the algorithm stops. Oth

erwise go to the next step.

Step 4: Generate a root node, a = (), Fa = J, and Ta — 0.

Step 5: Insert the root node into a heap.

Step 6: If the heap is not empty then go to the next step. Otherwise, the optimal

solution is found and the algorithm stops.

Step 7: Obtain a current node, (a1, F^,T^) by removing the top node from the heap.

Step 8: If F'a is empty, then update the upper bound ub.

Step 9: For each free job j G F'c, create a new job sequence a" by appending j to a'.

Step 10: For each new job sequence a", compute a lower bound lb' using the RLB and

the KSJLB algorithms.

Step 11: If lb' > ub then prune the current node by going to Step 6. Otherwise, go to

the next step.

Step 12: For each new job sequence, generate a new node (a", F^,T^).

Step 13: Search the hash table and apply MDR to the new node for pruning.

Step 14: If the new node does not violate MDR, then add the new node to the hash

table and the heap.

Step 15: Go to Step 6.

The heap structure described in Step 5 is sorted by the current lower bound of

the sub-problems. Nodes with partial sequences that have the best lower bound are

removed from the heap and explored earlier in the search process then nodes with

partial sequences that have a worst lower bound. Each node is only stored in the

74

www.manaraa.com

hash table if it is not pruned by either the bounds or the MDR. Note that the hash

table is indexed by bit vectors, which denote the set of unscheduled free jobs. Using

a bit vector to represent the set of free jobs allow a fast look-up time for the MDR

to compare previously explored nodes with the current node.

5.3 Counterexample

This section presents a counter example to a dominance rule used in the B&B al

gorithm presented in Luo and Chu [72] and Luo et al. [71]. For clarification, the

notations and the theorem presented in Luo and Chu [72] are provided. The follow

ing additional notations will be used in this section:

• J{K), the set of jobs in the partial job schedule K.

• U(K), the set of unscheduled jobs.

• C(K), the completion time of the last job in K.

• K\u, the new partial job schedule obtained by appending job u to the partial

job schedule K.

• ^(K\u), the Job schedule composed of K\u, completed by the partial optimal

job schedule, which belong to J — J(K\u), starting from C{K\u).

• | • \[i]\j], the number of jobs from position i to position j , including the two jobs

at position i and j .

• S be a sequence of jobs, and S', a sequence of jobs after some jobs are inter

changed in sequence S. Then [i] refers to the job index of the ith position in

S.

75

www.manaraa.com

The dominance rule presented in Luo and Chu [72] and Luo et al. [71] is formally

stated in the following theorem.

Theorem 13 [71, 72]

If there existsi, where \i] e J{K), Ax = S[i-i][fe]+P[fe] + S[fe][j+i]-5[i-i][j]-P[i]-S[j][i+i] <

0> IHI[ip] — nl> \\-\\u,end — n2, A 2 = S[i-i][k] + S[k][i+l] + S[k-l}[i\ + S[i]u — S[i-.i][i]- S[j][i+i]-

S[k-i\[k] - S[k]u < 0, AT = (ni - 1)Ai + S[;_ip] + S[fc-i][i] - s[i-i}[i] — s[k-i][k] + n2A2 < 0,

then ^(Klu) is dominated.

The counterexample for Theorem 13 is a 7 jobs instance with processing time

{290,95,100, 102,197,106,103} and due dates {783,683,824,708,808, 700, 784}. De

fine sequence a =(1,2,3,4,5,6,7). Then a new sequence j3 — (1,2,6,4,5,3,7) can

be constructed by interchanging job 3 and 6. Let the relevant setup times for these

sequences be s0,i = 0, s1}2 = 7, s2,3 = 7, s3A = 7, s4i5 = 8, s5i6 = 9, s6]7 = 9, s2,6 = 8,

s6,4 = 7- s5,3 = 7» s3,7 = 9. By Theorem 13, Ax = - 5 , A2 = - 1 , and AT = -17,

and hence, (3 is a dominant sequence. However, the total tardiness is Ta = 371 and

T@ — 488, hence, Theorem 13 pruned a superior sequence.

Luo and Chu [72] proves Theorem 13 by dividing the scheduled sequence of jobs

into three parts, namely part 0, part 1, and part 2, where part 0 corresponds to the

portion of the sequence prior to the index where where jobs [i] and [k] are inter

changed, part 1 corresponds to the portion of the sequence of jobs between the two

jobs [i] and [k], including the jobs [i] and [k], and part 3 corresponds to the remaining

part of the sequence after the interchange of the two jobs [i] and [k]. The breakdown

in the proof presented by Luo and Chu [72] is on how the total tardiness is computed

in part 1 of the sequence. Their formula using Ai for computing the differences in

tardiness in part 1 of the sequence is incorrect, since it does not take into account

that negative tardiness does not exist. The tardiness of a job is either 0 or a positive

value equal to the completion time minus the due date. The negative tardiness that

76

www.manaraa.com

is factored into their dominance rule over compensates for the difference in tardiness,

Ai, after the new sequence is constructed.

This counterexample shows that the B&B algorithm presented in Luo and Chu

[72] and Luo et al. [71] may over prune, and hence, may not have solved all their test

instances to optimality. In addition to losing the exactness of their algorithm, over

pruning can reduce the computation effort of the overall computational performances

of their B&B algorithm.

5.4 Computational Results

This section reports computational results for the BB&R algorithm described in Sec

tion 5.2. The computational results for the BFS exploration strategy is compared

with the computational results of the DBFS and DFS exploration strategies. In addi

tion, this section also compares the effectiveness of the two lower bound algorithms,

the RLB and the KSJLB, described in Section 5.2.2. The overall performance of the

BB&R algorithm is also compared to the computational results reported in Luo and

Chu [72].

The BB&R algorithm is evaluated over 2,880 randomly generated test instances.

These test instances were generated using the same generation scheme described in

Ragatz [89], Luo and Chu [72], Luo et al. [71], and Luo et al. [70]. Five different

parameters are used to generate the test instances:

• N, the number of jobs,

• VP, the variance of the job processing time,

• RS, the range of the setup time,

• TF, the average tardiness factor,

77

www.manaraa.com

• RD, the relative range of the due dates.

The variance of the job processing time, VP, is used to generate the processing

times for each jobs. Let the mean of the processing times be denoted as MP. MP is

then used along with the TF and RD, to generate the due dates. The mean of the due

date distribution is set equal to \x = (1 — TF)(N)(MP), and the due dates are then

generated uniformly over (n-((RD)(N)(MP))/2, (JI+((RD)(N)(MP))/2). The setup

times are also generated uniformly over (9.5 — (RS/2), 9.5 + (RS/2)). The parameters

used to generating the test instances are N = {10,12,14,16,18,20,22,26,30}, VP =

{25,625}, RS = {5,19}, TF = {0.2,0.4,0.6,0.8}, and RD = {0.2,0.9}. For each

combination of parameters settings, ten random instances are generated, for a total

of 2,880 instances. All the experiments were executed on a 2.4 Ghz Pentium PC with

2GB of RAM, with each instance in the test set restricted to total processing time of

30 CPU minutes, and total memory usage of 2GB.

Three different exploration strategies for the BB&R algorithm are compared. Ta

ble 5.1 reports the average and maximum running time (in CPU seconds) for the

DFS, BFS and DBFS exploration strategies. The DFS exploration strategy had the

worst computational performance compared to the other two exploration strategies.

Also, as shown by the maximum running time, the computational performance of the

DFS exploration strategy degraded significantly as the size of the instances increased.

On average, the DBFS and BFS exploration strategies was two to three times faster

than the DFS exploration strategy. The DBFS exploration strategy results were

comparable to the BFS exploration strategy. On average the overall computational

performance of the BFS exploration strategy was doing slightly better than the DBFS

exploration strategy. It appears that as the size of the problem instances increases,

the BFS exploration strategy becomes more efficient relative to the other exploration

strategies compared. Note that the average running times reported in Table 5.1 do

not include those problem instances that are unsolved due to the time limitation or

78

www.manaraa.com

memory limitation.

Table 5.2 reports the fraction of problem instances solved with respect to the com

putational time limits for the DFS, DBFS and BFS exploration strategies. The data

reported in Table 5.2 also includes the instances that were unsolved due to memory

limitations. While all instances of size N = 20 are solved to optimality within a 15

CPU minute time limit, the DFS exploration strategy could not solve 14 of the 320

problem instances because of memory limitations and 3 of the 320 problem instances

because of time limitations. For the N = 22 instances, the DFS exploration strategy

failed to solve 39 problem instances due to memory limitations and 12 problem in

stances due to time limitations out of the 320 problem instances. The results show

that the BB&R algorithm is more susceptible to the memory limitation constraint

than the time limitations constraint. The DBFS exploration strategy failed to solve

22 of the 320 problem instances due to memory limitations for problem instances

with iV = 22, and the BFS exploration strategy failed to solve 21 of the 320 problem

instances due to memory limitations for problem instances with N = 22. All prob

lem instances of N = 22 that were not solved to optimality by the DBFS and BFS

exploration strategy were cause by memory limitations. The affects of the memory

limitation is primarily caused by the database of states needed for both the lower

bound computation and for the MDR. These experiments display the classic tradeoff

between additional memory usages and reduction in computational times.

The computational experiments also show that the BB&R algorithms had the

most difficulty with problem instances with relative due date range RD = 0.2. Nearly

all instances there were unsolved either because of memory or time limitations had

a relative due date range RD = 0.2. A small RD value correspond to having jobs

with closer due dates. This in turn can generate many solutions that have similar

objective function values. The impact of a narrow due dates range RD is also reported

in Ragatz (1993).

79

www.manaraa.com

Table 5.1: l\STsd\ J^U BBfcR Algorithms: Average and Maximum CPU Time (sec.)
DFS DBFS BFS

N Avg. Max Avg. Max Avg. Max
10
12
14
16
18
20
22

0.04

0.23

1.3
6.4
46.5

105.4

164.6

0.27

3.5
17.2

136.8

707.5

1800

1800

0.02

0.09

0.4
1.8
9.4
35.6

85.3

0.11

1.08

3.7
26.3

162.1

569
1760

0.02

0.09

0.38

1.7
8.9
32.4

77.7

0.13

0.98

3.4
24.9

148.5

512.3

1599

Table 5.2: l\STsd\J2U BB&R Algorithms: Fraction Solved By Time Limit with
Different Exploration Strategies

DFS DBFS BFS
N 225s 15m 30m 225s 15m 30m 225s 15m 30m.
10
12
14
16
18
20
22

1.0
1.0
1.0
1.0
0.92

0.82

0.68

1.0
1.0
1.0
1.0
1.0
0.92

0.79

1.0
1.0
1.0
1.0
1.0
0.94

0.84

1.0
1.0
1.0
1.0
1.0
0.95

0.81

1.0
1.0
1.0
1.0
1.0
1.0
0.91

1.0
1.0
1.0
1.0
1.0
1.0
0.93

1.0
1.0
1.0
1.0
1.0
0.95

0.83

1.0
1.0
1.0
1.0
1.0
1.0
0.91

1.0
1.0
1.0
1.0
1.0
1.0
0.93

80

www.manaraa.com

of the Lower Bound Algorithms for the l\STad\J2U Schedul-

RLB KSJLB
N Avg % Avg Gap Avg % Avg Gap
10
12
14
16
18
20
22
26
30

1.3
0.9
0.3
0.2
0.2
0.1
0.04
-
-

84.6
87.3
86.1
85.8
84.6
85.1
84
-
-

87.1
90.8
89.6
88.8
88.5
88.2
86.5
-
-

9.5
10.5
9.9
9.6
8.7
8.3
8.8
-
-

Table 5.3 also reports the data comparing the effectiveness between the RLB and

KSJLB algorithms for computing the lower bounds. The column labeled Avg %

reports the percentage of the bounds computed where the corresponding algorithm

provided a tighter lower bound. The column labeled Avg Gap reports the average

gap between the initial lower bound computed by the respective algorithm with the

optimal objective function value found. These results show that the RLB algorithm

provides a weaker initial lower bound compared to the KSJLB. On average, the

initial lower bounds computed by KSJLB were almost always within a 10% gap from

the optimal solution. The tighter initial gap from the computed lower bound by

the KSJLB algorithm provided significantly more pruning. Furthermore, most of

the pruning that was attributed to the bounds was done by the KSJLB algorithm.

However, it was observed that the RLB algorithm became much more effective towards

the end of the B&B search processes. The lower bounds computed by the RLB

algorithm were able to prune more branches when most jobs were already scheduled

relative to when fewer jobs were scheduled, as in the early stages of the B&B search

process. The lower bounds computed by the KSJLB algorithm otherwise provided

more consistent pruning throughout the B&B search process.

The performance of the BB&R algorithm with the BFS exploration strategy com-

81

www.manaraa.com

Table 5.4: l\STad\Y,U BBfcR Algorithms Comparison with Luo and Chu [72]
Luo and Chu (2006) BBfeR with BFS

N CPU Sec. Solved (%) CPU Sec. Solved (%)
10 0.405 100 0.02 100
14 0.988 93.75 0.38 100
18 13.176 80.10 8.9 100
22 43.998 68.23 77.7 83.4
26 60.882 56.17
30 100.83 47.5 - -

pares favorably to the computational results reported in Luo and Chu [72], both in

terms of speed and the percentage of the largest problems solved. Table 5.4 reports

the computational time of the BB&R algorithm with the BFS exploration strategy

and the computational time of Luo and Chu's algorithm. Table 5.4 also reports the

percentage of problem instances solved to optimality with a 900 CPU seconds and a

225 CPU seconds time limit for Luo and Chu's algorithm and the BB&R algorithm,

respectively. Note that the experiments reported in Luo and Chu [72] were computed

on an Intel Pentium II 600 Mhz processor machine, whereas the experiments in this

chapter were executed on a Pentium D 2.4 Ghz processor machine. To adjust for

this difference in computing platform, the time limitation is reduced to a quarter of

the time limitation used in Luo and Chu [72]. With the adjusted time limitation,

the BB&R algorithms with BFS and DBFS exploration strategies were able to solve

more problem instances. Table 5.4 shows that with the smaller problem instances,

the the BB&R algorithm with BFS exploration stratiegy can be an order of magni

tude faster, however, with larger problem instances, Luo and Chu's reported a faster

running time. Although the reported running time of Luo and Chu's algorithm were

faster for the larger instances, these averages were computed with only instances that

were solved to optimality. The experiments in this chapter show that for larger in

stances, there were more unsolved instances by Luo and Chu's algorithm as compared

to the BB&R algorithm with BFS exploration strategy. These unsolved instances can

82

www.manaraa.com

significantly increase the reported average running time of Luo and Chu's algorithm.

Also note that the counter example described in Section 5.3 shows that the results

reported in Luo and Chu may be sub-optimal.

5.5 Conclusion

This chapter presents the BB&R algorithm with the BFS exploration strategy for

solving the l|STSd| ^2U scheduling problem. A memory-based dominance rule is in

corporated into the BB&R algorithm. A proof is also provided showing that the dom

inance rule will not over prune. A B&R algorithm for solving the 111]T) ti scheduling

problem was also used for computing the lower bound for the l|STS(j|]T} U scheduling

problem. The computational results reported show that the BB&B algorithm with

the BFS exploration strategy is competitive, if not superior, to the best results re

ported in the literature. Furthermore, the computational results also show that the

B&R algorithm for computing the lower bound is very efficient, consistently comput

ing initial lower bounds with an average gap of less then 10%. Different exploration

strategies for the BB&R algorithm were also compared. The DBFS and BFS explo

ration strategy provides a significant speed up over a traditional DFS exploration

strategy. The BFS exploration strategy is shown to be slightly better then the DBFS

exploration strategy.

83

www.manaraa.com

Chapter 6

Post Optimality Selection

The previous three chapters focuses on single objective combinatorial optimization

problems, however, many real-world optimization problems involve multiple (and of

ten conflicting) objectives. These problems are relevant in a variety of engineering

disciplines, scientific fields, and various industrial applications [20, 33]. Unlike sin

gle objective optimization problems, where one attempts to find the best solution

(global optimum), in multi-objective optimization problems, there may not exist one

solution that correspond to the best with respect to all objectives. Solving a multi-

objective optimization problems consist of generating the Pareto frontier, the set of

non-dominated solutions that represents the trade-off among the objective function

values. Different approaches are used to approximate and generate such sets of Pareto

optimal solutions. Some interactive approach incorporates preferences into the op

timization procedure to explore a specific region of the solution space. While other

approaches focus on generating a diverse sets of Pareto optimal solutions. Such sets

of Pareto optimal solutions can be extremely large, which motivates the need for

post-optimality analysis for multi-objective optimization problems.

The area of post-optimality analysis addressed in this chapter focuses on obtain

ing a preferred subset of solutions from a very large set of solutions with acceptable

objective function values. The goal in obtaining large sets of Pareto optimal solu

tions is to provide the decision-maker with a diverse set of such solutions. Although

obtaining diverse Pareto optimal solutions is important, it is often impractical for a

human decision-maker to manually examine each such solution, and hence, efficiently

84

www.manaraa.com

identify a good subset of such solutions. Previous research in this area has focused

on generalizing the representation of the full set of Pareto optimal solutions with a

smaller subset [57, 73]. Such procedures are not post-optimality analysis procedures,

but rather, extensions to multi-objective optimization procedures, which are designed

to generate diverse sets of Pareto optimal solutions [75, 74, 57]. Another area of re

search that incorporates preferences into the optimization procedures are interactive

methods [77, 78]. These interactive methods provide a decision-makes with better

control over the optimization process, allowing them to explore specific regions of the

search space. However, solutions obtained are quite sensitive towards the preferences

of the decision-maker. These approaches also require the decision-maker to have a

thorough knowledge of the problem. Korhonen and Halme [61] suggest the use of

a value function in helping decision-makers to identify the most preferred solutions.

Alternatively, to objectively evaluate and distinguish good subsets of Pareto optimal

solutions, Das [24] proposes an ordering and degree of efficiency among Pareto opti

mal solutions, which provides a way to measure and prune out less desirable Pareto

optimal solutions.

This chapter analyzes a discrete optimization problem formulation for obtaining a

preferred subset of Pareto optimal solutions from a larger set. This formulation allevi

ates the sensitivity of value function approaches, while obtaining a esired size subset of

Pareto optimal solutions. Two exact algorithms are presented for solving the discrete

optimization problem. In addition, five heuristics that obtain near-optimal solutions

are introduced. The complexity of the discrete optimization problem formulation is

presented. The exact algorithms and heuristics are applied to five test problems of

various sizes, to provide comparisons of their computational performances.

The chapter is organized as follows. Section 6.1 formally introduces the discrete

optimization problem formulation and necessary terminology and notation used in

this chapter. Section 6.2 discusses its complexity. Section 6.3 outlines the exact

85

www.manaraa.com

algorithms and other heuristics used to solve the discrete optimization problem. Sec

tion 6.4 reports computational results of the heuristics and algorithm, including the

Greedy Reduction (GR) algorithm [103], applied to five test problems. Section 6.5

contains concluding comments and directions for future research.

6.1 Discrete Optimization Problem Formulation

This section formally presents the discrete optimization problem formulation that was

previously introduced in Venkat et al. (2004). A brief review of the definitions and

terminology used in Venkat et al. (2004) is provided.

Consider the multi-objective optimization problem:

minF(x) = (/i(x), / 2 (x) , . . . , fk(x)) = z = (zi, z2,..., zk)
(6.1.1)

subject to: x G S

with k (> 2) objective functions fi : 5?" —» ift, i = 1,2, ...,k, where the decision

variables x = (x\, x2,..., xn) belong to the feasible region S C R " .

Definition 6.1.1 A solution x* G S and its objective function vector z* = F((x*) G

J-k is Pareto optimal if there does not exist another solution x G S such that fi(x) <

fi(x*) for all i = 1,2,..., k with fj(x) < fj(x*) for at least one j G {1, 2 , . . . , k}.

Let Spo = {x^x 2 , . . . ,x.N} C S denote a set of Pareto optimal solutions, which

may not contain the complete set of all Pareto optimal solutions. Let Fk = {(zi,z2,

..., Zk) '• z = F(x) for x S S } denote the feasible fc-objective space.

A value function V : Tk —> 3?, represents the preferences of a decision-maker

across the objective functions. It provides a total ordering for the set of Pareto op

timal solutions. In general, the value function is assumed to be strongly decreasing

in its components (i.e., the preference of the decision-maker increases if the objec-

86

www.manaraa.com

tive function value decreases, given that the other objective function values remain

unchanged).

Definition 6.1.2 A percentile vector of a solution xJ G Spo,j = 1, 2 , . . . , N, is the

corresponding vector of percentile values pj = (p[,P2, •••,p'k), j = 1,2,..., iV, where

p! G (0,1] is a percentile ranking of the j t h solution component based on the ith

objective function value.

By definition, given a set of Pareto optimal solutions, Spo, for every xJ G Spo,j =

1,2,..., JV, there exists a unique percentile vector p J . Therefore, there is a one-to-one

mapping for all x € Spo to some p J € pk, termed the percentile set defined below.

Definition 6.1.3 The percentile space (0, l]fe contain the percentile set pk = {p1, p2 ,

. . . ,pN} C (0, l]fe
; where each percentile vector p7 is defined as the percentile values

corresponding to solution xJ £ Spo.

A percentile function q : (0, l]k —> 5J, is a value function on the percentile space.

Note that the percentile function q has domain (0, l]fc, which contains the percentile

set pk. Therefore, a vector p ' G (0, l]k may not correspond to a percentile vector

in the percentile set, where q(p') measures the desirability of solutions that have

percentile values that are at least as high as values for each component in p'.

The defined preferred Pareto optimal solution subset (s) can be obtained by solving

the following discrete optimization problem, first introduced in Venkat et al. (2004),

which optimizes the percentile function q.

max q(pi,P2,---,Pk)

subject to: \Nsub\ > N' (6.1.2)

Nsub = {x G Spo : P i(x) > Pi, i = 1, 2, . . ., k},

87

www.manaraa.com

where N' is the minimum number of solutions in the preferred subset of Pareto optima

Spo, and pi, i = 1,2,... ,k, correspond to the percentile threshold for each of the k

objectives. This discrete optimization problem formulation is termed the Preferred

Pareto Optimal Subset Problem (PPOSP).

Optimal solutions for the PPOSP are defined by percentile values p* € (0, l]fc,

termed the threshold percentile vector, where q(p*) is the maximum value such that

there are at least N' solutions with percentile vectors that dominate p*, (i.e., if

p* = {pl,pl, • • • ,p*k), then a percentile vector p ' = (pi,P2> • • • iVk) dominates p* if for

every i = 1,2,... ,k, p\> pi). The threshold percentile vector defines the preferred

reduced solution set Nsub based on the percentile function q. Each solution in Nsub

is more desirable, having higher q value than any solutions that do not dominate the

threshold percentile vector. By design, the only subjective parameters are N' and the

percentile function.

The PPOSP is formulated over the percentile set. There are several advantages

in optimizing over the percentile set rather than the objective function space. In

many real world multi-objective problems, the objective functions typically have dif

ferent evaluation metrics and units. For example, objective functions can measure

costs, distances or volume. There may also be a large range of values associated

with the different objective functions. Normalizing and adjusting these values require

application-dependent knowledge and expertise. The percentile set on the percentile

space uses a ranking (ordinal) approach, which normalizes the different objective

functions, comparing the relative order instead of the value of each objective func

tion. Another advantage of working in the percentile space comes from a usability

perspective. It is often much easier for a decision-marker to visualize solutions in

terms of ranks as opposed to actual values. The ability to use actual values also

require detailed expert knowledge of the problem, where as ordinal ranking allows for

generalization. This ability to encapsulate the data for simpler representations can

88

www.manaraa.com

be beneficial to the subsequent decision process. By transforming the data into per

centiles, detailed information regarding the objective function values of the solutions

will be lost. For example, the difference p\ — p\ may be small, while the difference

/fe(^i) — fk{%2) raav t>e large. However, the goal of PPOSP is to obtain a reduced

preferred subset of Pareto optimal solutions with minimal threshold values, and not

to single out the best preferred Pareto optimal solution. The final decision is still

dependent on the decision-maker's final preferences. In addition, the PPOSP is not

limited to the percentile set, other normalization approaches can be used to capture

the differences in each objective function values.

The PPOSP can be generalized by using different range normalization approaches.

max q(ni,n2,...,nk)

subject to: \NN\ > N' (6.1.3)

NN = {x G Spo : n4(x) > nu i = 1, 2 , . . . , k},

where n^ i — 1,2, ...,k, correspond to the threshold of the normalized value for

each of the k objectives. Within this framework, the normalization can be computed

based on the relative distances between the ideal and Nadir points. Normalizing

in this way, information associated with the objective function values is preserved.

Note that although it is relatively straightforward to obtain the ideal point, it can be

difficult to obtain the Nadir point. The ability for PPOSP to incorporate different

normalization scheme provides significant flexibility for the decision-maker.

It is important to also note that the optimal threshold vector to the PPOSP may

not be unique; it is possible to have multiple threshold vectors that maximize the

percentile function value. Since each threshold vector uniquely defines a reduced

subset Nsub, then each threshold vector may lead to different subsets Nsub that are

optimal for PPOSP, and hence, the different optimal threshold vectors provide high

89

www.manaraa.com

level indicators to the quality of Pareto optimal solutions in Nsub.

There are two preferential parameters in PPOSP, the size of the desire subset, JV',

and the structure of the percentile function, typically in the form of a value function

(e.g., a convex combination of the objective functions). The optimal threshold per

centile vector(s) for the PPOSP define(s) the preferred reduced subset of solutions,

Nsuf,. Each of the threshold percentiles is analogous to the weight preferences used in

the value function approach (Korhonen and Halme 1990). However, instead of man

ually assigning weight preferences for each objective function, this manual procedure

is captured within the PPOSP, which provides a method for filtering undesirable so

lutions (i.e., solutions that do not satisfy the threshold values found by the PPOSP).

Finding such a reduced subset of Pareto optimal solutions reduces the burden on the

decision-maker to closely examine a large number of Pareto optimal solutions.

6.2 Complexity

This section shows that the corresponding decision PPOSP problem and the more

general decision problem, without the Pareto property, are both JVP-complete. For

clarity, define e$ to be a vector of size k, where all components are 0 except for the

ith component. Now, a formulation of the corresponding decision problem for the

PPOSP and its more general form are given.

Dominating Pareto Subset Problem (DPSP)

INSTANCE: Finite Pareto set U C Zfc, \U\ = N, positive integer B and N', where

N' < N.

QUESTION: Does there exist a subset U' C U, such that X)£=imm«ei/'(et • u) > B

and \U'\> N'l

A more general formulation of the DPSP is to remove the Pareto restriction on

90

www.manaraa.com

the set U.

Dominating Subset Problem (DSP)

INSTANCE: Finite set U C Zk, \U\ = N, positive integer B and N', where N' < N.

QUESTION: Does there exist a subset U' C U, such that X)j=i mmuet/'(e« • u) > B

and \U'\> N'l

Prior to showing the complexity results of the DPSP and DSP, it is necessary

to introduce the Maximum Edge Biclique Problem, which is JVP-complete (Peeters

2003), and its variation, Max N-M Biclique Problem.

Maximum Edge Biclique Problem (MEBP)

INSTANCE: Bipartite graph G = (Vi U V2, E), positive integer K < \E\.

QUESTION: Does G contain a biclique with at least k edges?

Max N-M Biclique Problem (Max NMBP)

INSTANCE: Bipartite graph G=(yiUV2,E), positive integer N <\Vi\, M <\V2\.

QUESTION: Does G contain a biclique Kid where i > M and j > N?

The MEBP can be used to show that the Max NMBP is JVP-complete.

Lemma 1 Max NMBP is NP-complete.

Proof: To prove that Max NMBP is JvP-complete, first show that Max NMBP is in

NP, and then proves that it is JVP-complete by showing that there is a polynomial

time reduction of MEBP to Max NMBP.

Given a biclique subgraph G' = (V{ U V{, E'), it takes 0(|V7| + | V2'| + \E\) time to

verify that it is a biclique and that it is a subgraph of G. Therefore, Max NMBP is

in NP.

Given an arbitrary instance of MEBP 4>, define k particular instances of Max

91

www.manaraa.com

NMBP pi, i = 1,2,..., k. Define pj to have the same G as </>, N = i and M = \k/i\.

This transformation takes constant time for each p,, and 0(k) time for all k instances.

To complete the proof, it is necessary to show that there is yes response for (j> if and

only if there is a yes response to any p,.

Suppose that the answer to an arbitrary instance of <p is yes. This implies that

there exist a subgraph G'(V{ U V2, E'), where G' is a biclique and that \E'\ > k. By

the design of the reduction, each possible minimal subset combination of \V[\ = N

and \V2\ = M are considered. Therefore, at least one instances of pi must be a yes.

Suppose that the answer to one of the particular instances of p is yes. This implies

that there exist a subgraph G'(V{ U V2, E') where G' is a biclique and that |Vi| > N

and IV2I > M. By the design of the transformation, N = i and M = \k/i\. The

number of edges in G' is |JE7'| = N • M = i- \k/i] > k. Therefore, G' is a subgraph of

G that is a biclique with k edges, and hence, the answer to <j) must be yes •

By using the Max NMBP, it can be shown that the general DSP and DPSP are

both iVP-complete.

Theorem 14 DSP is NP-complete.

Proof: Given a subset U' C U, it takes 0(\U'\) time to verify that minu€u'(ui) > B

and that there are at least N' elements. Therefore DSP is in NP.

Given an arbitrary instance of the Max NMBP 0, define a particular instance of

DSP p as follow: Without loss of generality let the set V\ correspond to U, namely,

each node v\ € Vi is a |A; |-tuple where k = | V21 - Also let V2 be an ordered set such

that each node v2 G V2 is labeled l(v2), where I : V2 —> {1,2, . . . , IV Î}- Each node

v2 corresponds to the l(v2)
th component for each of the |V2|-tuple in U. For each

element v\ e V\ and it's corresponding |V2|-tuple, the l{y2)
th component is 1 (0) if

and only if there is (not) an edge (vi,w2) £ E. This defines the set U. Lastly, let

N' = N and B = M. This reduction takes 0(|Vi| • \V2\) time. To complete the proof,

92

www.manaraa.com

it is necessary to show that there is a yes response for <j> if and only if there is yes

response for p.

Suppose that the answer to an arbitrary instance <j> is yes. This implies that there

exist a subgraph G'(V{UV2, E') where G' is a biclique and that \V{\ > N and \V2\ > M.

By the transformation, each node v[€ V{ corresponds to an element in U'. Since

every node v[is adjacent to every node v2 G V2, then each of such |V2|-tuple will have a

1 in the corresponding l(v'2)
th component. Therefore, the summation of the minimum

value of each component over U' must be at least M. Since \V2\ > M,|Vi| > N,

B = M, and N' = JV, then the corresponding U' defined by V{ will have at least N'

elements where the summation of the minimum value of each component is at least

B, which means that answer to p must also be yes.

Suppose that the answer to the particular instance p is yes. This implies that

there exist a subset U' such that \U'\ > N' and that Yli=i mmuet/'(ei" ui) ^ &• Since

each fc-tuple consist of either 0 or 1, then in order for Yl%=i mmuec/'(ej • u^ > B, there

must exist B components with value of over all v! £ U'. From the transformation,

for each u', the corresponding v[must be adjacent to v'2 hence the l(v'2)
th component

is 1. Since every v[shares B such common components (namely V2), then the sets

of nodes V{ and V2 and edges {v'^v^) for all v[£ V{ and v2 € V2}, form a biclique.

Lastly, since \V{\ = \U'\ = N' = N and \V2\ = B = M, then it is a N-M Biclique,

and hence, the answer to cj> must also be yes. •

Theorem 15 DPSP is NP-complete

Proof: Given a subset U' C U, it takes 0{\U'\) time to verify that Yli=i minue[//(ifj) >

B and that there are at least N' elements. Therefore, DPSP is in NP.

Given an arbitrary instance of DSP, 0, it can be reduced in polynomial time to a

particular instance DPSP, p, such that a solution exist for (f> if and only if a solution

exist for p. Given 0, the transformation converts the non-Pareto set U to a Pareto

93

www.manaraa.com

set Up. Without loss of generality, let U be an ordered set, where each element

u e U has a corresponding label l(u) with I : U —> {1,2,... , |{7|}. Construct Up

in the following way: For each element u, append a |£/|-tuple € {0, l}'*7', where the

l(u)th component is 1 and 0 for all other components (i.e., if u — {u\,... ,v,k) then

Up — (u i , . . . , life, 0 , . . . , 0 ,1,0, . . . , 0)). Since only the u element has entry of 1 in the

l(u)th component in the appended |C/|-tuple, then the new set Up is by design Pareto.

Let JV' and B remain the same. This transformation takes 0(|C/|) time. To complete

the proof, it is necessary to show that there is a yes response for 0 if and only if there

is a yes response for p.

First, consider the case where N' > 1. Suppose that the answer to an arbitrary

instance cf> is yes. This implies that there exist a subset U', where \U'\ > N' and

^^=1minue(7'(ej • u^ > B. Note since the transformed Up with the appended \U\-

tuples of 0's and l's does not affect the sum, then the answer to p must be yes.

Suppose that the answer to the particular instance p is yes. Then there is a Pareto

subset Up, where \U'p\ > N' and 5Zi=i mmuj,e(7' (e«' ui) ^ B- From the transformation,

the appended |£7|-tuple to each element u £U has entry 1 only at the l(u)th compo

nent, which implies that no two elements in Up have entry 1 at the same component in

the appended |[/|-tuple. Since N' > 1, then the minimum value for each component

in the appended |C/|-tuple must be 0, which does not affect X)i=i mm«PGC/' (e« • ui)-

Therefore, such a Up exist for p, then the same set excluding the appended |C/|-tuples

will also satisfy <f>, which implies that the answer to 4> must be yes.

Lastly, for the special case N' = 1, it is trivial case that takes 0(| t / |) time. This

is because one can examine each percentile vector individually. •

The DPSP is polynomial for k = 2 (i.e., for a bi-objective problem, the optimal

subset Nsub can be found in 0(\Spo\ log IS^0!) time). To see this, sorting the solution

percentile vector along a single objective function provides an ordering, which also

implicitly provides an ordering for the second objective function (due to the Pareto

94

www.manaraa.com

property). Enumerating all consecutive N' subsets of the ordered set finds the optimal

subset of Pareto optimal solutions (see Deterministic Sorted Local Search in Section

6.3.3).

6.3 Algorithms and Heuristics

This section introduces two exact algorithms and five heuristics for finding optimal/near-

optimal solutions for the PPOSP. Section 6.3.1 describes two different enumeration

approaches for the two exact algorithms. Sections 6.3.2 and 46.3.3 describe five

heuristics, which can be classified as constructive and local search heuristics. The

GR algorithm [103] is also re-examined in Section 6.3.4. Pseudo code for these algo

rithms and heuristics can be found in [52].

6.3.1 Exact Algorithms

Two different enumeration approaches are presented for solving the PPOSP. Since

the threshold percentile vectors define unique subsets of Pareto optimal solutions, the

PPOSP can also be solved by enumerating over all threshold percentile vectors. This

enumeration takes 0(\SPO\k) time. Alternatively, another approach is to enumerates

all possible subsets of Pareto optimal solutions of size N'. This enumeration takes

0(\SPO\N') time. Clearly, depending on the parameters Spo,N' and k, the two

different brute force enumerations result in different running time performances. This

subsection formulates two different algorithms that solve the PPOSP using these two

different underlying enumeration approaches.

Diagonal Enumeration

The Diagonal Enumeration (DE) algorithm is a modification of the first brute force

enumeration approaches described above. The DE algorithm avoids enumerating over

95

www.manaraa.com

all combinations of threshold percentile values. Depending on the threshold percentile

vector, the corresponding subset iVsub may have size less than N'. In order for the

percentile value function to be maximized with respect to N', the size of Nsub must

equal N'. If \Nsub\ > N', by reducing the size of Nsub, q will either remain the same

or increase. Lemma 2 states this formally.

Lemma 2IfUc Spo and U' C U, where p and p ' are the corresponding threshold

percentile vectors associated with U and U', respectively, then q(p) < q{p')-

Proof: Since every u G U dominates p, then there must exist &u £ U such that

iii = pi, for at least one i = 1,2,...,k. Let Ui = pi for some i £ {1,2 , . . . ,k} . U'

can be one of two possible kinds of subsets; either u G U' or u ^ U'. If u G 17', then

p = p', and hence, q(p) = q(p'). If u ^ U', and since u is removed from U, and

Pi > Pi = Ui, then q(p) < g(p'). D

The DE algorithm exploits the results in Lemma 2 to avoid performing a full

enumeration by constructing a ^-dimensional table (called the DE-table), where each

entry within the table corresponds to a subset of Pareto optimal solutions. By design,

each of the k dimensions corresponds to the k objective functions, where the indices

along each of the dimensions corresponds to percentile values. These indices also

represent the sorted order of the percentile values (i.e., index i along dimension j

corresponds to the ith smallest percentile value of the j t h objective function.) The

index of each entry can therefore be mapped to a valid threshold percentile vector. For

example, let p^ denote the ith percentile value in objective function j . Then if there

are three objective functions (i.e., k = 3), an index in the fc-dimensional DE-table,

(x,y,z) would corresponds to the threshold percentile vector {p\,P2,pl), and the

entry that corresponds to index (x, y, z), DE_table[x, y, z] would contain the subset of

Pareto optimal solutions defined by the threshold percentile vector {p*,p\,pl).

96

www.manaraa.com

The enumeration is done by systematically constructing the DE-table, where each

entry DE-table [x\,X2,. • •, £&] can be constructed by taking the set intersection of

DE-table[xi,x<2 — l,X3 — l, .. .,£& —1], DE-table[xi~l,X2,X3 — l,x^—l,... ,£& — 1] , . . . ,

DEJable[xi — l,x2 — 1,.. - £fc-i — l,xk] (see Figure 6.1). The algorithm constructs

the DEAable in a diagonal manner (as illustrated in Figure 6.2). The advantages

in constructing the DE-table in such a manner is to avoid a full enumeration. If

all entries along a single diagonal pass of the DE-table fail to contain at least N'

elements, then the enumeration process can be terminated, since all diagonal passes

thereafter will only contain percentile vectors with larger components. Furthermore,

it is unnecessary to enumerate indices along a particular dimension if the size of the

corresponding subsets are less than AT' (i.e., if entry DE-table[x, y, z] contain less then

N' elements, it is unnecessary to enumerate entries with index (i,y,z), where i > x,

(x,j,z), where j > y, and (x,y,k), where k > z). In the worst case, this algorithm

will construct the entire DE-table, and hence, the running time is 0(\Spo\k).

Obj. 1, percentile values

i
I
\

Figure 6.1: Two Dimensional Example of DE-table for the PPOSP.

97

www.manaraa.com

0 1 2 3 4 5 6

0
1
2

3
4
5

Figure 6.2: Two Dimensional Traversal of DEJable for the PPOSP.

Branch and Cut Algorithm

The DE algorithm solves the PPOSP by enumerating all combinations of percentile

values of the threshold percentile vector. Alternatively the PPOSP can be solved

by enumerating all subsets of Pareto optimal solutions of size N'. This enumeration

approach is used to construct the Branch and Cut (BC) algorithm.

This enumeration approach can be done by constructing \Spo\ search trees, where

each node of a search tree corresponds to a subset of Pareto optimal solutions, and

the root of each search tree is a unique element of Spo. The second level of each of

the search trees consists of all 2-element subsets constructed by adding a new element

to the root. The third level consists of all 3-element subsets by adding a new element

to its parent. Each level of the search trees is constructed by adding a new element

to the parent. Therefore, each search tree will have at most N' levels, where if all of

such search trees are fully constructed, then this corresponds to enumerating all N'

subsets.

The BC algorithm constructs each N' search trees, starting at the root. However,

it avoids performing a full enumeration by deciding whether to branch or cut at each

node of the different search trees. Since each node in the search tree corresponds

to a subset of Pareto optimal solutions, the corresponding percentile function value

98

www.manaraa.com

can also be calculated. If at any node, the percentile function value is less than the

current best percentile function value of a subset with N' elements, a cut is performed

at that node and further enumeration along that branch is unnecessary, since from

Lemma 2, any further branching along such nodes will only decrease the percentile

function value.

A random subset of Pareto optimal solutions of size N' is generated for the initial

best-to-date percentile function value. The higher the initial percentile function value,

the less branching that is needed for the enumeration. However, in the worst case,

the BC algorithm corresponds to enumerating all subsets of Pareto optimal solutions

of size N', and hence the worst case running time is 0(\SPO\N').

6.3.2 Constructive Heuristics

This subsection introduces two constructive heuristics for finding good solutions to

the PPOSP. The Greedy Constructive Elimination heuristic creates a preferred subset

of Pareto optimal solutions by eliminating elements from Spo until the size of the

preferred subset is N'. In contrast, the Greedy Constructive Expansion heuristic

builds a preferred subset of Pareto optimal solutions by adding elements to an empty

set until the size of the subset is N'. Both of these heuristics use a greedy selection

rule.

Greedy Constructive Elimination

The Greedy Constructive Elimination (GC-) heuristic starts by considering the full

set of Pareto optimal solutions Sp°. It then finds a subset of Spo of size N' by

iteratively eliminating elements from Spo. The percentile vector, which provides the

best improvement over the percentile function value if it is removed, is eliminated at

each iterative step. In the case of ties, a randomly selected percentile vector among

the ties is eliminated. This heuristic has running time of 0(\SPO\).

99

www.manaraa.com

Greedy Constructive Expansion

The Greedy Constructive Expansion (GC+) heuristic is motivated by the Branch

and Cut algorithm. Like the BC algorithm, it starts by considering |<SPO| subsets of

Pareto optimal solutions, each with a single distinct element of Sp°. However, unlike

the BC algorithm, at each level in constructing a search tree, the GC+ heuristic

greedily selects the best node to branch (i.e., an element is added to the current

subset (parent) only if it decreases the percentile function value of the current subset

the least). In the case of ties, a random solution is selected. A cut is performed, as

in the BC algorithm, based on the best-to-date percentile function value. The GC+

heuristic builds \SPO\ such search trees with distinct roots, where each search tree is

a simple path of length at most N'.

Since each of the elements in SP0 are used as the initial subsets, there could be

\Spo\ different subsets of Pareto optimal solutions of size N' (i.e., each of the \Spo\

different search trees) . The intuition behind this heuristic is to find an optimal

constructive ordering (i.e., an optimal ordering of increasing the initial subset such

that the resulting subset of Pareto optimal solutions is optimal), where constructing

each subset of Pareto optimal solutions takes 0(\SPO\ • N') time. Since there are

| 5 P O | such starting subsets, the worst case running time for the GC+ heuristic is

0(\SPO\2-N').

6.3.3 Local Search Heuristics

This subsection introduces three local search heuristics. Local search heuristics are

typically characterized by the following three steps:

1. Generate a feasible solution, s.

2. Attempt to find an improved feasible solution 5' in a neighborhood of s.

100

www.manaraa.com

3. If improved solution is found, replace s with s'. Repeat from Step 2.

The Deterministic Sorted Local Search heuristic examines subsets based on the sorted

ordering of each objective function. This heuristic is different from the typical local

search heuristic in that it uses a fixed deterministic neighborhood. The Element Ex

change Local Search heuristic and the Percentile Neighborhood Local Search heuris

tic differ primarily in their neighborhood functions. While the Element Exchange

Local Search heuristic defines its neighborhood function by altering the subset of

Pareto optimal solutions, the Percentile Neighborhood Local Search heuristic defines

its neighborhood function by perturbing the threshold percentile vector.

Deterministic Sorted Local Search

The Deterministic Sorted Local Search (DSLS) heuristic examines subsets of Pareto

optimal solutions of size N' by only considering percentile vectors sorted by one of the

objective functions. Therefore, Spo is sorted A; times by each objective function (i.e.,

there are k different sorted ordering of SPO), where each of the k sorted orderings is

examined by considering subsets of size N' with consecutive elements in the sorted

Spo. The best percentile function value found is then returned. Since traversing each

sorted Spo takes linear time, the sorting of Spo dominates this heuristics' running

time. In particular, the DSLS heuristic has running time 0(k\Spo\ log l-S^50!).

Lemma 3 shows that in a bi-objective problem, a subset of Pareto optimal solutions

cannot have the maximum percentile function value unless the subset contain only

elements that are consecutive in a sorted ordering based on one of the objective

functions. Using this result, the DSLS heuristic finds the optimal subset of Pareto

optimal solutions for the bi-objective problem.

Lemma 3 Let U C Spo C 9ft2, (ui,u2) ^ U. If there exists some (111,142), (^1,^2) £

U such that U\ > U\ and v2 > u2, then the corresponding percentile function value of

101

www.manaraa.com

U cannot be the optimal.

Proof: This result can be proved by constructing a new subset U with a larger

percentile function value. Suppose that there exist such a (ui, U2) £ U. Furthermore,

without loss of generality, let (•U1,M2) € U such that U\ > u[for all {u'x,u'^) € U,

and let (^1,^2) £ U such that v2 > u'2 for all (wi,u2)
 e ^- By the definition of the

Pareto Property a new subset can be constructed, U = U/{(ui,U2)}{J{(ui,U2)} or

17 = U/{(v 1, ^2)} LKC"i> ̂ 2)} will only increase the percentile function value. •

By the Pareto property, sorting SP0 based on one of the objective functions

implicitly sorts the other objective function values. This ordering is a necessary

condition for optimality, as shown in Lemma 3 for k = 2. Moreover, since Lemma 2

states that the optimal subset must be of size N', then the DSLS heuristic must find

the optimal solution for the bi-objective problem.

Element Exchange Local Search

The Element Exchange Local Search (EELS) heuristic uses a single element exchange

neighborhood function. The single element exchange neighborhood function trans

forms a feasible subset of Pareto optimal solutions by substituting percentile vectors

in and out of the current feasible subset of Pareto optimal solutions. By design, this

single element exchange neighborhood function can enumerate all possible subsets

of size N'. This neighborhood function is quite general and provides limited direc

tion for the local search. To provide more restrictions and to increase efficiency of

the local search, two greedy modifications are added. The first modification forces

the neighborhood function to greedily select the best element for the single element

exchange, which provides the largest improvement to the percentile function value

of the current feasible subset of Pareto optimal solutions. The second modification

limits the candidate percentile vectors considered for the feasible subsets of Pareto

102

www.manaraa.com

optimal solutions. An element that has been removed from the current subsets of

Pareto optimal solutions is eliminated from any further consideration. The single

element exchange neighborhood function is modified to only consider elements in the

pool, defined as the set of candidate elements that have not been considered in any

feasible subsets.

These two greedy modifications significantly increase the efficiency of the EELS

heuristic. Since each percentile vector can be exchanged into a feasible subset at most

once, and at each iteration there are at most | 5 p o | comparisons, then the worst case

running time for a single starting initial feasible subset is 0(|5 P O | 2) .

The single element exchange neighborhood function is of size | S1^01. One variation

of this neighborhood function is to perform multiple element exchanges. However,

increasing the number of exchanges also increases the size of the neighborhood. Since

the size of the neighborhood increases exponentially, greedily selecting the best per

centile vector would be infeasible, although such an expanded neighborhood would

reduce the number of local optima. To avoid being attracted to the same local opti

mum, the EELS heuristic is restarted with new random initial subsets. If the number

of restarts is given by C, then the worst case running time for the EELS heuristic is

0(C-\Spo\2).

Percentile Neighborhood Local Search

The Percentile Neighborhood Local Search (PNLS) heuristic is motivated by the DE

algorithm. Recall that each entry in the DEJ,able corresponds to a subset of Pareto

optimal solutions. The DE algorithm may enumerates many subsets of Pareto optimal

solutions, with sizes much larger than N'. Lemma 2 shows that these subsets of Pareto

optimal solutions are not optimal. The PNLS heuristic modifies the DE algorithm by

avoiding enumeration of entries with corresponding subsets of size greater than N'.

The neighborhood function for the PNLS heuristic maps each entry in the DEAable

103

www.manaraa.com

to a set of neighboring entries, where an entry is then visited based on the size

constraint and the percentile function value. The neighbor of an entry is defined as

follows: (ui,U2, • • •, Uk) is a neighbor of (vi, v2,..., Vk) if |UJ—Vi\ < 1 for i = 1,2,..., k.

The intuition behind this neighborhood function is that neighboring entries should

correspond to subsets of similar sizes. By setting the initial entry with a corresponding

subset of size N', this allows the heuristic to examine entries with corresponding

subsets of similar sizes. In the worst case, this neighborhood function may enumerate

the full DEJable.

The PNLS heuristic biases the neighbor selection to avoid enumerating the full

DE.table. A new neighboring entry is selected based on the size of the corresponding

subset as well as the corresponding percentile function value. Subsets of size N' with

improving percentile function value are considered first. The heuristic terminates

when a threshold, given by T, of non-improvement neighboring searches are made.

The PNLS heuristic is initialized at a starting entry where the size constraint is

at equality. To find such a starting entry, select one objective function i, and set

the percentile function vector to be (0, . . . , p , , . . . ,0). An entry with subset of size

N' can be found by increasing the percentile value pi, which then can be used as the

initial entry for the PNLS heuristic. This can be repeated for each of the A; objective

functions. Since the PNLS heuristic searches for the optimal solution in a state space

of size |5 ,FO | fc, then it has a worst case running time of 0(\Sp0\k), similar to the DE

algorithm.

6.3.4 Greedy Reduction Algorithm

The idea of capturing a preferred subset of Pareto optimal solutions by optimizing the

PPOSP was introduced in [103]. They describe and analyze the Greedy Reduction

(GR) algorithm for obtaining a subset of Pareto optimal solutions from a larger set

of such solutions. The GR algorithm executes in linear time, 0(\Spo\/N'). This

104

www.manaraa.com

Table 6.1: Counter Example for the GR Algorithm.
Percentile Values
h
1.0
0.9
0.5
0.8
0.4
0.6
0.7
0.1
0.2
0.3

/ 2

1.0
0.9
0.5
0.4
0.3
0.2
0.1
0.8
0.7
0.6

h
0.1
0.2
0.9
0.6
1.0
0.8
0.7
0.5
0.4
0.3

9
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2

chapter also provides computational results of applying the GR algorithm to five

multi-objective optimization problems. The Pareto optimal solution sets for each of

these problems were generated by using five interactive optimization methods. Several

different values of N' were tested with the GR algorithm, which provides an efficient

way to generate a subset of Pareto optimal solutions from a larger set.

The GR algorithm attempts to maximize the percentile function q using a greedy

element elimination strategy. At each iteration, it only considers the best N' solu

tions according to the ordering of the percentile function values. It then finds the

corresponding threshold vector that satisfies these N' solutions, and eliminates all

the solutions that fail the threshold. This is repeated until no solutions remain. The

maximum threshold vector obtained across all iterations is the resulting solution.

The drawback of such an approach is that solutions may be eliminated prema

turely. Greedily selecting the top q values does not measure the potential contribution

of individual percentile values. Table 6.1 provides a counterexample to the optimality

result reported in Venkat et al. [103]. Each row in the table corresponds to an element

in p3. There are ten elements in the Pareto optimal solution set. If the decision-maker

wants a reduced set of size N' = 3, the GR algorithm will fail to find the reduced

subset, and hence, contradicts the optimality result of the GR algorithm reported in

105

www.manaraa.com

Table 6.2: First Iteration of the GR Algorithm Applied to Table 6.1 Example.
Percentile Values

h
1.0
0.9
0.5
0.8
0.4

0.6
0.7
0.1
0.2

0.3

h
1.0
0.9
0.5
0.4

0.3
0.2
0.1

0.8
0.7
0.6

h
0.1
0.2
0.9
0.6
1.0

0.8
0.7

0.5
0.4

0.3

Q

2.1
2.0
1.9
1.8
1.7

1.6
1.5
1.4

1.3
1.2

Venkat et al. [103]. Table 6.2 depicts the first iteration of the GR algorithm. The

top three solutions, rows 1, 2, 3, are selected, and p m m = (0.5,0.5,0.1) as indicated

by the boxed values in Table 6.2. The remaining solutions are then eliminated from

consideration, failing to meet the threshold. The algorithm terminates after the first

iteration, returning the first three solutions with percentile function value 1.1. How

ever, 1.1 is not the optimal value for this instance. In particular, if rows 1, 2, 4 are

selected, then the optimal solution is found with pmm = (0.8,0.4,0.1), and percentile

function value 1.3.

6.4 Computational Results

This section reports computational results of the algorithms and heuristics described

in Section 6.3, applied to five multi-objective optimization problems. Test Problem

1 consists of three non-linear convex objective functions with bounded constraints.

Test Problem 2, adapted from [82], consists of three non-linear convex objective func

tions with non-linear constraints. Test Problem 3, taken from Van Veldhuizen [102],

consists of three non-linear non-convex objective functions with bounded constraints.

Test Problem 4 is a randomly generated Pareto optimal solution set in K4, containing

106

www.manaraa.com

1.5

1.4

1.3

. 12

> 1.1
o
••8

! 1

I 0.9
o

»• 0.8

0.7

0.6

0.5

0 50 100 150 200 250
Size(N')

Figure 6.3: The PPOSP: Test Problem 1 Percentile Function Value Results.

2000 Pareto optimal solutions, while Test Problem 5 is a randomly generated non-

Pareto set in 5ft4, with 2000 solutions over the same variable range for Test Problem

4. See Venkat et al. [103] for specific details of these problems.

An exhaustive enumeration procedure was executed to obtain the true Pareto

optimal solution set for Test Problems 1, 2, 3. In particular, the feasible region is

sampled via a fine grid to capture the true Pareto optimal solution sets. Because

of the size of Test Problems 4, 5, only computational results with the five heuristics

are reported. Other enumeration and approximation methods to generate the set of

Pareto optimal solutions can be found in Ehrgott [32], Ehrgott and Gandibleux [33]

and Miettinen [77].

The PPOSP is formulated for each test problem, where the percentile function is

of the form, q(pi,p2, • • • ,Pk) = Y2i=iPi- Figures 6.3, 6.4, 6.5 report computational

results using the DE algorithm and heuristics for Test Problems 1, 2, 3, respectively.

The EELS heuristic and the PNLS heuristic were repeated ten times, using a new

random initial solution for each run. The threshold used for the PNLS heuristic

107

Test Problem 1

www.manaraa.com

Test Problem 2

150 200

Size(N')

DSLS —*- -
GC- — * — .

GC+ a
EELS - - » • -
PNLS —o—

GR — • -

300

Figure 6.4: The PPOSP: Test Problem 2 Percentile Function Value Results.

Test Problem 3

1.8

1.6

3 1.4

= 1-2 -

0.6
50 200 250

Size(N')

300

I 1 1 1 1 1 1 1
DE — i —

S \ DSLS —x—
\ \ ^ GC- — *—
, •••. \ . GC+ a
- ^ . '•. \ _ EELS - - » - • -
'--, ~S.\ ^ \ PNLS — e—

\ " : V \ . G R • • • • - •

"<3*x \ -
X„;---v ^ " " \ ^

N^-«. ^ » ^ TL^.. ^ ^ " - ^

**̂ ^^\
"•"•>-'r»— ^ ^ - ^

"""X---."'--- "'-•-- ^ " " * ^ - » -

~"~--;--. -»_ ^-^^ ^s^*^^ '̂~-.-/^B-^^
"-. ~\" '^ ' •<-.- .^^\^ "

"""---•-. ***---,>0"1

""-•-...
*---.

*"•••--.
""•""---

• i i i i i '

350 400

Figure 6.5: The PPOSP: Test Problem 3 Percentile Function Value Results.

108

www.manaraa.com

o

co

4
^

C
O

O

O
r

O

O

O

O

co
 b
o

1—
>
 C
O

O
S

O

o

o

co
 c
o

b
O

*
>
.

0.999
0.998 p

o

C
O

C
O

-
J

*>
.

O
r

c
n

h
-
>

1
—
'

o

o

p

o

O
S

O
S

O
S

C
n

300 o

co

h
-
»

O
S

o

co

h
-
» 1.0 o
 .952 h-
»

o

o
 .639

250 o
 .897 o
 .929 h-
1

O
 o

co

C
n

1
—
>

o

O
 ,624

200 o

bo

0
0

C
O

o
 .856 0.999 o

C
O

I
—
1

o

1
—
»

o

o
 .607

i
—
»

O
r

O
 o
 606'

o
 .928 1.0 o
 .908 h
-
i

O
 o
 .596

o

o

o
 .907 o
 .922 O
 o
 ,936 i

—
'

o

o
 ,575

C
n

O
 o
 .905 o
 .975 h

-
» o

o
 .934 i

—
•

o

o

.564

^
 O

CO

f

CO

H
 O

Q

1
 GC+/DE EELS/E H

3

f

CO

"a

GR/DE

co

co
 t
o

O

C
n

O

O

O

O

bo
 b
o

O
S

C
n

O

cn

o

p

bo
 b
o

—
J

C
n

0
0

b
O

1.0
0.993 o

o

co
 c
o

C
n

O
S

O

K
5

1.0
0.973 o

p

bo
 b
o

1—
'
 4
^

1—
"

0
0

200 o
 .865 o
 .823 i

—
>

o

o
 .965 0.989 o
 .890

C
n

O

O
 .857 o
 .854 1.0 o
 .943 1.0 o

co

i
—
*

to
 100 o
 ££8

o
 .855 0.997 o
 ,972 0.995 o

C
O

1
—
>

o

C
n

o

o
 .819 o
 .928 0.995 o
 096'

0.991 o
 906' ^

 O

CO

f

CO

H
 O
 o

1
 GC+/DE EELS/E M

PNLS/DE GR/DE

f
c
3

rr

i-
i

O

cr

CD

B

to
 240 o

bo

0
0

r
f
^

p

C
O

0
0

o

I
—
1

o

o

co

0
0

o

o

co

oo

-a

o

bo

o

~
q

200 o

co

i
—
>

oo

o

C
O

-a

oo

h-
1

O
 o

co

co

t—
»

>—
'

o
 p

bo

h
-
»

os
 i

—
>

O
S

o

o

C
O

to

co

p

co

oo

co

i
—
i

o
 p

co

C
O

^
j

i
—
>

o

o

bo

C
O

to
 h

-
>

to

o

o

co

o

0
0

p

co

0
0

cn

o

C
O

co

-a

o

co

C
O

co

h
-
1

O
 o

bo

C
O

o

0
0

o

o

C
O

to

H-
»

o

co

-a

co

i
—
»

o

o

C
O

oo

-
4

h
-
»

O
 o

co

i
—
>

oo
 o

o

C
O

o

to

p

C
O

^

-
J

p

C
O

C
O

oo

p

C
O

C
O

as

i—
"

o

o

C
O

4
^

~J
 ^
 a CO

f

CO

H

O
 o

1

7*
**
?

O

O
 +

>-̂
.

o

H

H

CO

'-
0

2

tr
<

CO

"D

H

a
;

cT

os

co

H

tr

a>

TJ

O

°
s

er
g

CD
 r

t-

B
e?

o
 5'

5"

CD

www.manaraa.com

o
3

V
al

I c D
U.

n
til
e

K
o
s CL

1.8

1.6

1.4
[

1.2

1

0.8

0.6

l \

'" N\

" S \ N \

-

-

Test Problem 4

i i i i i i i i
DSLS — i —

GC- — x —
GC+ --•*—

EELS — a
PNLS - - » • -

\

'*-.

v V~-""-.. " *

X . \ ~~~--^ B.̂
V ,^V_ ^ " x " - > -

"*-—^=*--^

i i i i i i I I

"

_

-

-

-

-

100 200 300 400 500 600 700 800 900 1000

Size(N')

Figure 6.6: The PPOSP: Test Problem 4 Percentile Function Value Results.

Test Problem 5

200 300 500 600 700 800

Size(N')

900 1000

Figure 6.7: The PPOSP: Test Problem 5 Percentile Function Value Results.

110

www.manaraa.com

was 1000 non-improving iterations. The DE algorithm and each of the local search

heuristics where initialized as described in Section 6.3. Table 6.3 reports the ratio

of the percentile function value found by each of the heuristics over the optimal

percentile function value obtained by the DE algorithm. The numbers of Pareto

optimal solutions generated with the sampling scheme for Test Problems 1, 2, 3, were

441, 650, and 1075, respectively. Different ranges of N' were used for each of the test

problems. Size parameter N' = 40, 80, 120, 160, 200, 240, N' = 50, 100, 150, 200, 250,

300, and N' = 50, 100, 150, 200, 250, 300, 350, 400 were applied to Test Problems

1, 2, 3, respectively. Note that as N' increased to 15^°!, the percentile function

value solved by each of the heuristics converges. In particular, if N' = \SPO\, then

the optimal percentile function value will be "%2i=1 mmpeSpo pt, which is depicted in

Figures 6.6, 6.7 for the two larger test problems.

The computational results reported for Test Problems 1,2,3 suggest that the GC+

heuristic and the PNLS heuristic can be very effective in finding the optimal subset of

Pareto optimal solutions. Figures 6.4, 6.5 depict a comparison of the computational

results obtained from applying the heuristics to Test Problems 1, 2, 3. From Table

6.3, the GC+ heuristic found the optimal solutions 12 out of 20 experimental runs,

and the PNLS heuristic found the optimal solutions 15 out of the 20 experimental

runs, including all the optimal solutions for Test Problem 3 for each N'. The lowest

GC+/DE ratio and PNLS/DE ratio across Test Problems 1, 2, 3 are 0.995 and 0.973,

respectively. Although the EENS heuristic did not find the optimal solutions for

Test Problems 1, 2, 3, it was still very efficient, always obtaining solutions within 10

percent of the optimal solutions. The GC- heuristic, the DSLS heuristic, and the GR

algorithm always found solutions within 20 percent of the optimal solutions for Test

Problems 1, 2. However, as the size of SPO increased, the quality of solutions found

by the GR algorithm degraded, as illustrated by Test Problem 3 (see Figure 6.5). The

GC- heuristic and DSLS heuristic found solutions within 15 percent of the optimal

111

www.manaraa.com

solutions for Test Problem 3, while the GR algorithm failed to find any solutions

within 30 percent of the optimal solutions. Moreover, as N' increased, quality of

solutions found by the GR algorithm degraded, while this is not the case for the

heuristics introduced in this chapter.

Figures 6.6, 6.7 depict a comparison of the computational results obtain from

applying the five heuristics to Test Problems 4, 5, respectively. These heuristics were

applied to these two test problems with N' = 100, 200, 300, 400, 500,1000. The PNLS

heuristic and the EELS heuristic were repeated with ten different randomly generated

initial solutions. The threshold used for the PNLS heuristic was 1000 non-improving

iterations. The optimal solutions for Test Problems 4, 5 are unknown. However, by

comparing the percentile function values, the GC+ heuristic clearly out performs the

other four heuristics. The EELS heuristic obtained larger percentile function value

in Test Problem 5; this is most likely due to the relaxation of the Pareto property in

Test Problem 5. Since the EELS heuristic uses an element exchange neighborhood

function, the Pareto property ensures that when exchanging an element from the

preferred subset, some component of the threshold percentile vector must increase

while others must either remain constant or decrease. However, without the Pareto

restriction, the negative effect of exchanging a poor percentile vector into the preferred

subset is mitigated (i.e., each components of the threshold percentile vector may all

increase). It is not apparent whether the Pareto property has an effect on the other

heuristics. Although the PNLS heuristic performed well for Test Problems 1, 2, 3, it

performed poorly in Test Problems 4, 5, which is likely due to the large problem size.

Tables 6.4, 6.5 report the experimental running time for applying the algorithms

and heuristics to the five test problems. All experiments were executed on a 997MHz

Intel Pentium III processor. The GR algorithm and the GC- heuristic were the two

fastest heuristics. The DE algorithm had the slowest experimental running time,

which is not surprising since it had to perform an exponential time enumeration. Of

112

www.manaraa.com

Table 6.4: Algorithms and Heuristics for the PPOSP: Average Running Time (CPU
Seconds)

Test Problem 1
N'
40
80
120
160
200
240

DE
49962
46268
39076
28448
22806
14897

DSLS

1.3
1.7
1.9
2.0
2.0
1.9

GC-
0.2
0.2
0.2
0.2
0.2
0.2

GC+
110
451
1120
1891
2762
3773

EELS

69
134
162
193
176
180

PNLS

276
278
316
329
340
350

GR
0.1
0.21
0.2
0.2
0.15
0.3

Test Problem 2
N'
50
100
150
200
250
300

DE
53312
134710
136038

142055
144775
104832

DSLS

2.3
2.9
3.6
3.5
3.6
3.6

GC-
0.3
0.3
0.4
0.5
0.4
0.4

GC+
279
1238
2930
5941
8682
12436

EELS

154
300
431
512
533
543

PNLS

726
580
758
474
609
553

GR
0.2
0.2
0.1
0.1
0.1
0.1

Test Problem 3
N'
50
100
150
200
250
300
350
400

DE
781127
886240
820453
967034
933062
932000
919328
1012952

DSLS

4.3
5.0
5.8
6.6
7.3
7.8
8.2
8.7

GC-
0.1
0.3
0.4
0.6
0.7
0.8
1,0
1.2

GC+
108
695
1910
4343
8842
15444
25424
36671

EELS
333
676
1529
1809
2119
2361
2579
2701

PNLS
445.2
445.9
534.4
534.7
628.6
637.4
765.3
662.6

GR
0.2
0.2
0.3
0.2
0.2
0.3
0.2
0.2

113

www.manaraa.com

the five heuristics, the GC+ heuristic had the slowest experimental running time,

however it was also the most effective heuristic in finding optimal and near-optimal

solutions. The GC+ heuristic also had memory limitations due to the recursive

nature. On the other end of the quality performance trade-off spectrum, the PNLS

heuristic was the fastest, but only managed to find solutions within 20 percent of the

optimal solutions for the small problems. For Test Problems 4, 5, the PNLS heuristic

found solutions that had significantly smaller percentile function value (i.e., up to 30

and 50 percent less than those solutions found by the GC+ heuristic in Test Problems

4, 5, respectively). The PNLS heuristic, the EELS heuristic, and the GC- heuristic

provided a quality performance trade-off spectrum in decreasing experimental running

time, respectively. For Test Problems 1, 2, 3, the quality of solutions is positively

correlated with the increase of running time. However, for Test Problem 4, 5, this

correlation did not follow for the PNLS heuristic. Note that although the experimental

running time for the PNLS heuristic gracefully increased with the increase in the size

of Spo, the quality of solutions found were similar to those found by the GC- heuristic

and the EELS heuristic, both of which had significantly faster experimental running

times. Lastly, notice that as N' increased and approached \Spo\/2, the experimental

running time also increased, which corresponds to the worst case analysis where the

number of possible subsets is maximized (i.e., 0{ r—^))-

6.5 Conclusion

Multi-objective optimization problems occur in numerous real-world applications.

Solving such problems can yield large sets of Pareto optimal solutions. This chapter

examined the question of identifying preferred subsets of Pareto optimal solutions.

The formulation of the discrete optimization problem, PPOSP, is designed to assist a

decision-maker in finding preferred subsets of Pareto optimal solutions. The PPOSP

114

www.manaraa.com

Table 6.5: Algorithms and Heuristics for the PPOSP: Average Running Time (CPU
Seconds)

Test Problem 4
N'
100
200
300
400
500
1000

DSLS

7
9
11
13
15
19

GC-
2.3
2.2
2.2
2.2
2.1
1.6

GC+
16180
47090
86380
135500

-

-

EELS

748
1565
2442
3221
3834
4866

PNLS

1676
1793
1866
1933
2011
2559

Test Problem 5
N'
100
200
300
400
500
1000

DSLS

7
9
12
14
15
21

GC-
2.4
2.3
2.4
2.3
2.3
1.8

GC+
2220
19640
61790
117000

-

-

EELS

755
1638
2518
3459
4195
5657

PNLS

1743
1854
1818
1942

2029
2549

is unique, in that it allows the decision-maker to obtain a desirable subset size N',

based on threshold values for each objective functions. It does not require expert

knowledge in finding such reduced preferred subset, which allows the decision-maker

to focus on smaller sets of preferred Pareto optimal solutions. In addition, unlike typ

ical value function approaches, the PPOSP is formulated (but not limited to) in the

percentile space, which provides an ordinal approach in addressing the post-optimality

selection problem.

The decision formulation of the PPOSP is formulated and proven to be NP-

complete, which corrects the optimality results reported in Venkat et al. [103]. Two

exact algorithms, the DE algorithm and the BC algorithm, are provided for solving

the PPOSP to optimality. Five heuristics are also presented, which provide a spec

trum of heuristics with varying trade-offs in solution quality and run time efficiency.

The experimental results reported suggest that the GC+ heuristic can yield the best

results, if running time can be sacrificed. Otherwise the EELS heuristic provided the

best trade-off, efficiently returning quality solutions. The experimental results from

115

www.manaraa.com

Test Problems 1, 2, 3 also suggest that the PNLS heuristic can be effective for smaller

problems.

The heuristic presented in this chapter does not require the set of solutions to

be Pareto. Although the decision problem for a non-Pareto set is also proven to be

iVP-complete, it is not clear what the impact of the Pareto property has on these

heuristics. The Pareto property provides structure to the feasible solution set for the

PPOSP. For bi-objective problems, the DSLS heuristic uses this structure to find the

optimal solution. However, it is not apparent how one can exploit such structure in

higher dimensional problems.

The PPOSP introduces a new approach to address the post-optimality selection

problem. It provides a framework that defers the need of expert knowledge in the

decision process, reducing the burden of the decision-maker to only focus on preferred

reduced subsets of Pareto optimal solutions. The use of the percentile set provides one

level of encapsulation. Providing higher levels of encapsulation, while retaining the

consistency of the decision-maker preferences, is an area of current research activity.

Another area of research is to address the scalability of the heuristics and algorithms

higher dimensional problems. The ultimate goal of this effort is to design a fully

automated post-optimality selection process.

116

www.manaraa.com

Chapter 7

Summary

The research presented in this dissertation focuses on two topics in combinatorial

optimization, designing efficient exact algorithms for several single machine scheduling

problems, and formulating a discrete optimization problem for addressing the post-

optimality selection problem.

The BB&R algorithms have been shown to outperform the current best algorithms

in the literature for the l | r , |^C/i , l | r j | ^£ j , and l l ^ T ^ l ^ i j scheduling problems.

Computational results show that the BB&R algorithms are very effective, and that

they are capable of solving even larger test instances than the ones reported in the

literature. A new DBFS exploration strategy is also introduced and incorporated

into the BB&R algorithms. By design, the DBFS exploration strategy works in

conjunction with the memory-based dominance rules to explore fewer states. Chapter

3 and 4 show that the DBFS exploration strategy provides a significant computational

speedup compared to DFS and best first search exploration strategies. Chapter 5

shows that the DBFS exploration strategy is comparable to the best first search

strategy for the l|STsd| ^U scheduling problem. In addition, several new dominance

rules and bounding schemes for these scheduling problems are also presented. The

combination of explicit memorization of states, new exploration strategy, dominance

rules, and improved bounds computation demonstrate that the BB&R algorithms are

very efficient. These results show that the BB&R algorithms have the potential to

solve other combinatorial problems.

Although the results of the BB&R algorithms for these three scheduling problems

117

www.manaraa.com

presented in this dissertation are very promising, the BB&R algorithms do have

their limitation. By explicitly storing every visited state, the BB&R algorithms can

incur a significant memory overhead. This is most noticeable in Chapter 5 when

the BB&R algorithm is used for solving the l\STsd\J2ti scheduling problem. The

time limitation imposed on the algorithm did not constrain the performance of the

algorithm, whereas, the memory limitation caused many unsolved problem instances.

Despite the negative results due to the memory limitation, the effect of the memory

limitation could be potentially curtailed by stronger dominance rules and bounding

schemes. With stronger dominance rules and bounding schemes, this could provide

early pruning of the search tree reducing the number of explicitly stored states while

boosting the overall performance of the algorithm. However, if there are fewer states

stored, this can reduce the effectiveness of the memory-based dominance rules. The

key on improving the performance of the BB&R algorithms is to find a balance

among the different components such that each component can benefit one another.

In addition, it is also worthwhile to incorporate multi-core computing architecture

technologies with the BB&R algorithm and DBFS exploration strategy. By design,

the DBFS exploration strategy contains the features needed to take advantage of a

distributed environment. Distributed computing strategy can provides substantial

improvements in both memory management and computational processing time.

The research effort presented in Chapter 6 on the PPOSP formulation addresses

the second topic of this dissertation on post-optimality selection. The new PPOSP

formulation provides a framework that reduces the burden on the decision-maker by

using limited expert knowledge to find a preferred reduced subset of Pareto optimal

solutions. A new ordinal ranking approach is used in the PPOSP formulation that

provides one level encapsulation. The PPOSP formulation can be viewed as a specific

normalization procedure by using the percentile set. Other normalization approaches

can be beneficial and might result in different preferred subsets of Pareto optimal

118

www.manaraa.com

solutions. Using different normalization strategies can provide one method of sensi

tivity analysis to the PPOSP formulation. This sensitivity analysis could be helpful

in assessing the benefit in using this framework. Furthermore, it would also be inter

esting to consider applying other scalarizing functions to the percentile vectors. This

can also be very helpful in assessing the benefits of using an ordinal ranking approach

and can also enhance the significance of the general framework.

119

www.manaraa.com

References

[1] A. Allahverdi, C.T. Ng, T.C.E. Cheng, and M.Y. Kovalyov. A survey of schedul
ing problems with setup times or cost. European Journal of Operational Re
search, 187:985-1032, 2008.

[2] V.A. Armentano and R. Mazzini. A genetic algorithm for scheduling on a single
machine with set-up times and due dates. Production Planning and Control,
11:985-1032, 2008.

[3] E. Baker, A. Joseph, A. Mehrotra, and M. Trick (eds). Extending the Hori
zons: Advances in Computing, Optimization, and Decision Techbologies Series.
Springer, 2007.

[4] P. Baptiste, J. Carlier, and A. Jouglet. A branch-and-bound procedure to
minimize total tardiness on one machine with arbitrary release dates. European
Journal of Operational Research, 158:595-608, 2003.

[5] P. Baptiste, C. Le Pape, , and L. Perify. Global constraints for partial csps: A
case-study of resource and due date constraints. In M. Maher and J.F. Puget,
editors, Principles and Practice of Constraint Programming - CP98, Lecture
Notes in Computer Science, volume 1520, pages 87-101. Springer, 1998.

[6] P. Baptiste, L. Peridy, and E. Pinson. A branch and bound to minimize the
number of late jobs on a single machine with release time constraints. European
Journal of Operational Research, 144:1-11, 2003.

[7] A. Baykasoglu, S. Owen, and N. Gindy. A taboo search based approach to find
pareto optimal set in multiple objective optimization. Journal of Engineering
Optimization, 31:731-748, 1999.

[8] D. Bedworth and J. Bailey. Integrated Production Control Systems: Manage
ment, Analysis, Design. Wiley and Son, Inc., 1987.

[9] R. Bellman. Bottleneck problems and dynamic programming. Mathematics,
39:947-951, 1953.

[10] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

120

www.manaraa.com

[11] C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys, 35(3):268-308, Septem
ber 2003.

[12] D. Brown and C. White III (eds). Operations Research and Artificial Intelli
gence: The Integration of Problem-Solving Strategies. Kluwer Academic, 1990.

[13] P. Brucker. Scheduling Algorithms, 2nd Edition. Springer, 1999.

[14] S. Chang, Q. Lu, G. Tang, and W. Yu. On decomposition of the total tardiness
problem. Operations Research, 17(5):221-229, 1995.

[15] H. Cho, S. Oh, and D. Choi. A new evolutionary programming approach based
on simulated annealing with local cooling schedule. In Proceedings of the 1998
IEEE International Conference on Evolutionary Computation, pages 598-602,
Anchorage, AK, 1998. IEEE Press.

[16] C. Chu. A branch-and-bound algorithm to minimize total tardiness with dif
ferent release dates. Naval Research Logistics, 39:265-283, 1992.

[17] C. Chu and M.C. Portmann. Some new efficient methods to solve the n\ 1 |r̂ | X) U
scheduling problem. European Journal of Operational Research, 58:404-413,
1992.

[18] C.A. Coello. An updated survey of evolutionary multiobjective optimization
techniques: State of the art and future trends. In Peter J. Angeline, Zbyszek
Michalewicz, Marc Schoenauer, Xin Yao, and Ali Zalzala, editors, Proceedings
of the Congress on Evolutionary Computation, volume 1, pages 3-13, Mayflower
Hotel, Washington D.C., USA, 6-9 1999. IEEE Press.

[19] C.A. Coello and C. Romeros (eds). Evolutionary Algorithms and Multiple Ob
jective Optimization, Multiple Criteria Optimization-State of the Art Annotated
Bibliographic Surveys. Kluwer Academic, New York, 2002.

[20] C.A. Coello, D. Van Veldhuizen, and G.B. Lamont. Evolutionary Algorithms
for Solving Multi-Objective Problems. Kluwer Academic, New York, 2002.

[21] P. Czyiak and A. Jaszkiewicz. Pareto simulated annealing- a metaheuristic
technique for multiple-objective combinatorial optimization. Journal of Multi-
Criteria Decision Analysis, 7:34-47, 1998.

[22] G. Dantzig. Linear Programming and Extensions. Princeton University Press,
1963.

[23] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Journal of Operations Research, 2:393-410, 1954.

[24] I. Das. A preference ordering among various pareto optimal alternatives. Struc
tural Optimization, 18(l):30-35, 1999.

121

www.manaraa.com

[25] S. Dauzere-Peres. Minimizing late jobs in the general one machine scheduling
problem. European Journal of Operational Research, 81:134-142, 1995.

[26] S. Dauzere-Peres and M. Sevaux. Using lagrangean relaxation to minimize the
weighted number of late jobs on a single machine. Naval Research Logistics,
50:273-288, 2003.

[27] S. Dauzere-Peres and M. Sevaux. An exact method to minimize the number
of tardy jobs in single machine scheduling. Journal of Scheduling, 7:405-420,
2004.

[28] K. Deb. Evolutionary Algorithms for Multi-Criterion Optimization in Engi
neering Design. Wiley and Son, Inc., 1999.

[29] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-
Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J.
Merelo, and H.P. Schwefel, editors, Proceedings of the Parallel Problem Solv
ing from Nature VI Conference, pages 849-858, Paris, France, 2000. Springer.
Lecture Notes in Computer Science No. 1917.

[30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II. Evolutionary Computation, IEEE
Transactions on, 6(2): 182-197, 2002.

[31] J. Du and J. Y-T Leung. Minimizing total tardiness on one machine is np-hard.
Mathematics of Operations Research, 15(3):483-495, 1990.

[32] M. Ehrgott. Multicriteria Optimization. Springer, 2005.

[33] M. Ehrgott and X. Gandibleux (eds). Multiple Criteria Optimization: State of
the Art Annotated Bibliographic Surveys. Kluwer Academic, 2002.

[34] H. Emmons. One-machine sequencing to minimize certain functions of job
tardiness. Operations Research, 17(4):701-715, 1969.

[35] CM. Fonseca and P.J. Fleming. Genetic algorithms for multiobjective opti
mization: Formulation, discussion and generalization. In Genetic Algorithms:
Proceedings of the Fifth International Conference, pages 416-423. Morgan Kauf-
mann, 1993.

[36] C. Gagne, W.L. Price, and M. Gravel. Comparing an aco algorithm with other
heuristics for the single machine scheduling problem with sequence-dependent
setup times. Journal of the Operational Research Society, 53(8):895-906, 2002.

[37] X. Gandibleux, N. Mezdaoui, and A. Freville. A tabu search procedure to solve
multiobjective combinatorial optimization problems. In R. Caballero, F. Ruiz,
and R. Steuer, editors, Advances in Multiple Objective and Goal Programming,
volume 455, pages 291-300. Springer, 1997.

122

www.manaraa.com

[38] M. Garey and D. Johnson. Computers and Intractability: Guide to the Theory
of NP-Completeness. WH Freeman and Company, 1979.

R. Garfinkel and G. Nemhauser. Integer Programming. John Wiley Press, 1972.

F. Glover. Future paths for integer programming and links to artificial intelli
gence. Computers and Operations Research, 13:533-549, 1986.

B. Golden, S. Raghava, and E. Wasil (eds). The Next Wave in Computing,
Optimization, and Decision Technologies. Springer, 2005.

C. Gomes. Challenges and opportunities in planning and scheduling. The
Knowledge Engineering Review, 15:1-10, 2000.

C. Gomes. On the intersection of ai and or. The Knowledge Engineering Review,
16:1-4, 2001.

R. Graham, E. Lawler, J. Lenstra, and A. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: A survey. Annals
Discrete Mathematics, 4:287-326, 1979.

S.R. Gupta and J.S. Smith. Algorithms for single machine total tardiness
scheduling with sequence dependent setups. European Journal of Operational
Research, 175:722-739, 2006.

T. Hanne. Global multiobjective optimization using evolutionary algorithms.
Journal of Heuristics, 6:347-360, 2000.

M.P. Hansen. Tabu searh in multiobjective optimization: Mots. In Proceed
ings of the 13th International Conference on Multiple Criteria Decision Making
(MCDM-97), Cape Town, South Africa, 1997.

H. Ishibuchi, T. Yoshida, and T. Murata. Balance Between Genetic Search and
Local Search in Memetic Algorithms for Multiobjective Permutation Flowshop
Scheduling. Evolutionary Computation, IEEE Transactions on, 7(2):204-223,
2003.

A. Jaszkiewicz. Multiple Objective Metaheuristic Algorithms for Combinatorial
Optimization, Habilitation Thesis. Poznan University of Technology, Poznan,
Poland, 2001.

A. Jouglet, P. Baptiste, and J. Carlier. Branch-and-bound algorithms for total
weighted tardiness. In J. Y-T. Leung, editor, Hangbook of Scheduling: Algo
rithms, Models, and Performance Analysis, pages 307-328. CRC Press, 2004.

A. Rinnooy Kan. Machine Scheduling Problem: Classification, Complexity and
Computation. Nijhoff, Hague, 1976.

123

www.manaraa.com

[52] G.K. Kao and S.H. Jacobson. Post-optimality algorithms and heuristic for
multi-objective optimization. In Technical Report, Department of Computer
Science, University of Illinois at Urbana-Champaign, IL, 2006.

[53] G.K. Kao and S.H. Jacobson. Finding preferred subsets of pareto optimal
solutions. Computational Optimization and Applications, 40:73-95, 2008.

[54] G.K. Kao, E.C. Sewell, and S.H. Jacobson. Minimizing total tardiness for the
single machine with sequence dependent setup time problem using the bb&r
algorithm. In Technical Report, Department of Computer Science, University
of Illinois at Urbana-Champaign, IL, 2008.

[55] G.K. Kao, E.C. Sewell, and S.H. Jacobson. A branch, bound, and remem
ber algorithm for the l |rj | ^2U scheduling problem. Journal of Scheduling, (to
appear).

[56] G.K. Kao, E.C. Sewell, S.H. Jacobson, and S.N. Hall. The distributed best
first search exploration strategy: An illustrative example with the l|rj|5^wt
scheduling problem. In Technical Report, Department of Computer Science,
University of Illinois at Urbana-Champaign, IL, 2008.

[57] E.M. Kasprzak and K.E. Lewis. Pareto analysis in multiobjective optimization
using the colinearity theorem and scaling method. Structural and Multidisci-
plinary Optimization, 22(3):208-218, 2001.

[58] H. Kise, T. Ibaraki, and H. Mine. A solvable case of the one-machine scheduling
problem with ready and due times. Operations Research, 26(1):121—126, 1978.

[59] J. Knowles and D. Corne. M-PAES: A memetic algorithm for multiobjective
optimization. In Proceedings of the 2000 Congress on Evolutionary Computation
CEC00, pages 325-332, La Jolla Marriott Hotel La Jolla, California, USA, 6-9
2000. IEEE Press.

[60] T. Koopmans and M. Beckmann. Assignment problems and the location of
economic activities. Econometrica, 25:53-76, 1957.

[61] P. Korhonen and M. Halme. Supporting the decision maker to find the most
preferred solutions for a molp-problem. In Proceedings of the 9th International
Conference on Multiple Criteria Decision Making, pages 173-183, Fairfax, Vir
ginia, 1990.

[62] C. Koulamas. The total tardiness problem: Review and extensions. Operations
Research, 42:1025-1041, 1994.

[63] J. Lasserre and M. Queyranne. Generic scheduling polyhedra and a new mixed
integer formulation for single machine scheduling. In Proceedings of the 2nd
Integer Programming Conference, pages 136-149, Pittsburgh, PA, 1992.

124

www.manaraa.com

[64] E. Lawler. Combinatorial Optimization: Networks and Matroids. Hold, Rine-
hart, and Winston, 1976.

[65] E. Lawler. A pseudo-polynomial algorithm for sequencing jobs to minimize
total tardiness. Annals of Discrete Mathematics, 1:331-342, 1990.

[66] E. Lawler. Knapsack-like scheduling problems, the moore-hodgson algorithm
and the "tower of sets" property. Mathematical and Computer Modelling, 20:91-
106, 1994.

[67] Y.H. Lee, K. Bhaskaran, and M. Pinedo. A heuristic to minimize the total
weighted tardiness with sequence dependent setups. HE Transactions, 29:45-
52, 1997.

[68] J. Lenstra, A. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling
problems. Annals of Discrete Mathematics, 1:342-362, 1977.

[69] S.W. Lin and K.C. Ying. Solving single-machine total weighted tardiness prob
lems with sequence-dependent setup times by meta-heuristics. International
Journal of Advance Manufacturing Technology, 34:1183-1190, 2007.

[70] X. Luo and C. Chu. A branch and bound algorithm of the single machine sched
ule with sequence-dependent setup times for minimizing maximum tardiness.
European Journal of Operational Research, 180:68-81, 2007.

[71] X. Luo, C. Chu, and C. Wang. Some dominance properties for single-machine
tardiness problem with sequence-dependent setup. International Journal of
Production Research, 44:3367-3378, 2006.

[72] X. Luo and F. Chu. A branch and bound algorithm of the single machine
schedule with sequence dependent setup times for minimizing total tardiness.
Applied Mathematics and Computation, 183:575-588, 2006.

[73] C.A. Mattson, A.A. Mulur, and A. Messac. Smart pareto filter: Obtaining a
minimal representation of multiobjective design space. Engineering Optimiza
tion, 36:721-740, 2004.

[74] A. Messac, A. Ismail-Yahaya, and C.A. Mattson. The normalized normal con
straint method for generating the pareto frontier. Structural and Multidisci-
plinary Optimization, 25:86-98, 2003.

[75] A. Messac and C.A. Mattson. Normal constraint method with guarantee of
even representation of complete pareto frontier. AIAA Journal, 42:2101-2111,
2004.

[76] R. M'Hallah and R.L. Bulfin. Minimizing the weighted number of tardy jobs on
a single machine with release dates. European Journal of Operational Research,
176:727-744, 2007.

125

www.manaraa.com

K.M. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic,
1999.

K.M. Miettinen and M.M. Makela. Interactive multiobjective optimization sys
tem www-nimbus on the internet. Computers and Operations Research, 27:709-
723, 2000.

J.M. Moore. One machine sequencing algorithm for minimizing the number of
late jobs. Management Science, 15:102-109, 1968.

T. Morin and R. Marsten. Branch and bound strategies for dynamic program
ming. Operations Research, 24:611-627, 1976.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

S.C. Narula, L. Kirilov, and V. Vassilev. An interactive algorithm for solving
multiple objective nonlinear programming problems. In Proceedings of 10th
International Joint Conference on Multiple Criteria, pages 119-127, Taipei,
Taiwan, 1983.

S. Nash and A. Sofer (eds). The Impact of Emerging Technologies on Computer
Science and Operations Research. Kluwer Academic, 1995.

G. Nemhauser. Introduction to Dynmaic Programming. John Wiley Press, 1966.

S.S. Panwalkar, R.A. Dudek, and M.L. Smith. Sequencing research and the
industrial scheduling problem. In E. Elmaghraby, editor, Symposium on the
Theory of Scheduling and its Applications, pages 29-38, Berlin, 1973. Spinger.

L. Peridy, E. Pinson, and D. Rivreau. Using short-term memory to minimize
the weighted number of late jobs on a single machine. European Journal of
Operational Research, 148:591-603, 2003.

M.L. Pinedo. Planning and Scheduling in Manufacturing and Services. Springer,
Heidelberg, 2005.

C.N. Potts and L.N. VanWassenhove. A decomposition algorithm for the single
machine total tardiness problem. Operations Research Letters, 1:177-182, 1982.

G.L. Ragatz. A branch and bound method for minimum tardiness sequencing
on a single processor with sequence dependent setup times. In Proceedings of
the 24th Annual Meeting of the Decision Sciences Institute, pages 1375-1377,
Baton Rouge, LA, 1993.

[90] P.A. Rubin and G.L. Ragatz. Scheduling in a sequence dependent setup envi
ronment with genetic search. Computers and Operations Research, 22:85-99,
1995.

126

www.manaraa.com

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Englewood Cliffs, New Jersey, 1995.

S. Salhi and N.M. Queen. A Hybrid Algorithm for Identifying Global and Local
Minima When Optimizing Functions with Many Minima. European Journal of
Operational Research, 155(1):51-67, 2004.

D.w. Sellers. A survey of approaches to the job shop scheduling problem. In
28th Southeastern Symposium on System Theory, pages 396-400, Baton Rouge,
LA, 1996. IEEE Computer Society.

M. Sevaux and S. Dauzere-Peres. Genetic algorithms to minimize the weighted
number of late jobs on a single machine. European Journal of Operational
Research, 151(2):296-306, 2000.

A. Souissi and C. Chu. Minimizing total tardiness on a single machine with
sequence-dependent setup times. In 2004 IEEE International Conference on
Systems, Man and Cybernetics, pages 1481-1485, Hague, Netherlands, 1996.
IEEE Computer Society.

W. Szwarc, F. Delia Croce, and A. Grosso. Solution of the single-machine total
tardiness problem. Journal of Scheduling, 2(2):55-71, 1999.

W. Szwarc, A. Grosso, and F. Delia Croce. Algorithmic paradoxes of the single-
machine total tardiness problem. Journal of Scheduling, 4(2):93-104, 2001.

K.C. Tan and R. Narasimhan. Minimizing Tardiness on a Single Processor with
Sequence-Dependent Setup Times: a Simulated Annealing Approach. Omega,
25(6):619-634, 1997.

K.C. Tan, R. Narasimhan, P.A. Rubin, and G.L. Ragatz. A Comparison of Four
Methods for Minimizing Total Tardiness on a Single Processor with Sequence
Dependent Setup Times. Omega, 28(3):313-326, 2000.

E.L. Ulungu, J. Teghem, P. Fortemps, and D. Tuyttens. Mosa method a tool for
solving multiobjective combinatorial optimization problems. Journal of Multi-
Criteria Decision Analysis, 8:221-236, 1999.

V. Vazirani. Approximation Algorithms. Springer, 2003.

D.A. Van Veldhuizen. Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations, Ph.D Thesis. Department of Electrical and
Computer Engineering, Graduate School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio, 1999.

[103] V. Venkat, S.H. Jacobson, and J.A. Stori. A post-optimality analysis algorithm
for multi-objective optimization. Computational Optimization and Applications,
28:357-372, 2004.

127

www.manaraa.com

[104] L.A. Wolseyn. Integer Programming. Wiley-Intercsience Publication, 1979.

[105] R. Zhou and E.A. Hansen. Stuctured duplicate detection in external-memory
graph search. In Proceedings of 19th National Conference on Artificial Intelli
gence (AAAI-04), pages 683-688, San Jose, CA, 2004.

[106] R. Zhou and E.A. Hansen. Beam-stack search: Integrating backtracking with
beam search. In Proceedings of 15th International Conference on Automated
Planning and Scheduling (ICAPS-05), pages 90-98, Monterrey, CA, 2005.

128

www.manaraa.com

Author 's Biography

Gio K. Kao was born on August 12th, 1980 to Leo and Christina Kao in the city of

Hong Kong, China. At the age of 9, he moved to Palo Alto, CA in the United States.

In August of 1998, Gio started his undergraduate studies in Computer Science at the

University of Illinois at Urbana-Champaign. Gio recieved a B.S. in Computer Science

with a minor in Mathematics in May 2002. After graduating he continued his studies

and started in August of 2002 at the University of Illinois at Urbana-Champaign

with his Doctorate of Philosophy in Computer Science studies under the guidance

of Prof. Sheldon H. Jacobson. While doing his graduate studies on problems at the

interfaces of Computer Science and Operations Research, Gio received the Sandia

National Laboratories Fellowship from the Department of Energy from 2003 to 2007.

Following his completion of his Ph.D., Gio will join Sandia National Laboratories in

Albuquerque, NM, to further his research.

129

